OFFSET
1,6
COMMENTS
a(n) is the smallest m >= 1 such that 2*n*3^m - 1 is prime.
The smallest unknown case is n = 100943. Is a(100943) = 0?
If it exists, a(100943) > 30000. - Michael S. Branicky and Jon E. Schoenfield, Jun 07 2022
EXAMPLE
For n = 21: Successively applying the map x -> 3*x+2 to 2*21-1 = 41 yields the sequence 41, 125, 377, 1133, 3401, 10205, 30617, 91853, 275561, 826685, 2480057, reaching the prime 2480057 after 10 steps, so a(21) = 10.
PROG
(PARI) a(n) = my(x=2*n-1, i=0); while(1, x=3*x+2; i++; if(ispseudoprime(x), return(i)))
(Python)
from sympy import isprime
def f(x): return 3*x + 2
def a(n):
fn, c = f(2*n-1), 1
while not isprime(fn): fn, c = f(fn), c+1
return c
print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jun 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jun 06 2022
STATUS
approved