login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354747
Start with 2*n-1; repeatedly triple and add 2 until reaching a prime. a(n) = number of steps until reaching a prime > 2*n-1, or 0 if no prime is ever reached.
4
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 2, 10, 1, 1, 2, 1, 2, 4, 1, 1, 1, 2, 1, 1, 4, 3, 2, 3, 1, 1, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 3, 3, 1, 1, 2, 3, 3, 5, 1, 1, 1, 2, 3, 9, 1, 1, 2, 1, 2, 4, 1, 2, 1, 6, 1, 1, 2, 1, 1, 5, 1, 3, 1, 2, 1, 1, 3, 1
OFFSET
1,6
COMMENTS
a(n) is the smallest m >= 1 such that 2*n*3^m - 1 is prime.
The smallest unknown case is n = 100943. Is a(100943) = 0?
If it exists, a(100943) > 30000. - Michael S. Branicky and Jon E. Schoenfield, Jun 07 2022
EXAMPLE
For n = 21: Successively applying the map x -> 3*x+2 to 2*21-1 = 41 yields the sequence 41, 125, 377, 1133, 3401, 10205, 30617, 91853, 275561, 826685, 2480057, reaching the prime 2480057 after 10 steps, so a(21) = 10.
PROG
(PARI) a(n) = my(x=2*n-1, i=0); while(1, x=3*x+2; i++; if(ispseudoprime(x), return(i)))
(Python)
from sympy import isprime
def f(x): return 3*x + 2
def a(n):
fn, c = f(2*n-1), 1
while not isprime(fn): fn, c = f(fn), c+1
return c
print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jun 06 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Felix Fröhlich, Jun 06 2022
STATUS
approved