login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128591
Expansion of f(x, x^5) * f(x, x^3) in powers of x where f(, ) is Ramanujan's general theta function.
7
1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 0, 0, 1, 2, 2, 1, 1, 1, 1, 2, 3, 1, 1, 0, 2, 1, 1, 2, 0, 2, 0, 2, 1, 0, 4, 2, 0, 1, 1, 2, 1, 2, 2, 1, 2, 0, 1, 1, 2, 0, 1, 1, 1, 2, 2, 2, 0, 1, 1, 3, 1, 1, 0, 1, 4, 1, 2, 1, 0, 4, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 1, 2, 3
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(x) * psi(x) * psi(-x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Nov 15 2015
Expansion of q^(-11/24) * eta(q^2)^4 * eta(q^3) * eta(q^12) / (eta(q)^2 * eta(q^4) * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -2, 1, -1, 2, -2, 2, -1, 1, -2, 2, -2, ...].
a(n) = A128582(4*n + 1).
2 * a(n) = A257920(3*n + 1). - a(n) = A260118(4*n + 1). 2 * a(n) = A257921(6*n + 2). -2 * a(n) = A128580(12*n + 5) = A190615(12*n + 5). - Michael Somos, Nov 15 2015
EXAMPLE
G.f. = 1 + 2*x + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + x^9 + x^10 + 3*x^11 + ...
G.f. = q^11 + 2*q^35 + q^59 + q^83 + q^107 + q^131 + 2*q^155 + q^179 + 2*q^203 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-1/2) QPochhammer[ -x, x^2] EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Nov 15 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A)^2 * eta(x^4 + A) * eta(x^6 + A)), n))};
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 11 2007
STATUS
approved