The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279497 Number of pentagonal numbers dividing n. 3
 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 1, 2, 1, 1, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Table of n, a(n) for n=1..120. Eric Weisstein's World of Mathematics, Pentagonal Number. Index to sequences related to polygonal numbers. FORMULA G.f.: Sum_{k>=1} x^(k*(3*k-1)/2)/(1 - x^(k*(3*k-1)/2)). Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3*log(3) - Pi/sqrt(3) = 1.482037... (A244641). - Amiram Eldar, Jan 02 2024 EXAMPLE a(12) = 2 because 12 has 6 divisors {1,2,3,4,6,12} among which 2 divisors {1,12} are pentagonal numbers. MATHEMATICA Rest[CoefficientList[Series[Sum[x^(k (3k -1)/2)/(1 - x^(k (3k -1)/2)), {k, 120}], {x, 0, 120}], x]] Table[Count[Divisors[n], _?(IntegerQ[(1+Sqrt[1+24#])/6]&)], {n, 120}] (* Harvey P. Dale, Jan 05 2022 *) PROG (PARI) a(n) = sumdiv(n, d, ispolygonal(d, 5)); \\ Michel Marcus, Jul 27 2022 CROSSREFS Cf. A000326, A007862, A046951, A244641. Sequence in context: A353445 A115722 A115721 * A359305 A138330 A128591 Adjacent sequences: A279494 A279495 A279496 * A279498 A279499 A279500 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Dec 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 30 04:46 EDT 2024. Contains 372958 sequences. (Running on oeis4.)