login
A279500
Decimal representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 161", based on the 5-celled von Neumann neighborhood.
4
1, 0, 5, 0, 23, 0, 93, 0, 381, 0, 1493, 0, 6101, 0, 23893, 0, 97621, 0, 382293, 0, 1561941, 0, 6116693, 0, 24991061, 0, 97867093, 0, 399856981, 0, 1565873493, 0, 6397711701, 0, 25053975893, 0, 102363387221, 0, 400863614293, 0, 1637814195541, 0, 6413817828693
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Dec 14 2016: (Start)
a(n) = a(n-2) + 16*a(n-4) - 16*a(n-6) for n>6.
G.f.: (1 + 4*x^2 + 2*x^4 + 6*x^6 - 8*x^10) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)*(1 + 4*x^2)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 161; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 2], {i, 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 13 2016
STATUS
approved