The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A279495 Number of tetrahedral numbers dividing n. 7
1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Inverse Möbius transform of A023533. - Antti Karttunen, Oct 01 2018
Records are a(1) = 1, a(4) = 2, a(20) = 4, a(120) = 5, a(280) = 6, a(560) = 7, a(840) = 8, a(1680) = 9, a(9240) = 11, a(18480) = 12, a(55440) = 13, a(120120) = 14, a(240240) = 15, a(314160) = 16, a(628320) = 17, a(1441440) = 18, a(2282280) = 19, a(4564560) = 21, a(9129120) = 22, a(13693680) = 23, a(27387360) = 24, a(54774720) = 25, a(68468400) = 26, a(77597520) = 27, a(136936800) = 28, a(155195040) = 29, a(310390080) = 30, a(465585120) = 31, a(775975200) = 32, a(1163962800) = 33, a(2327925600) = 36, a(4655851200) = 37, a(13967553600) = 38, a(16295479200) = 40. - Charles R Greathouse IV, Dec 19 2016
LINKS
Eric Weisstein's World of Mathematics, Tetrahedral Number.
FORMULA
G.f.: Sum_{k>=1} x^(k*(k+1)*(k+2)/6)/(1 - x^(k*(k+1)*(k+2)/6)).
a(n) = Sum_{d|n} A023533(d). - Antti Karttunen, Oct 01 2018
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Jan 02 2024
EXAMPLE
a(10) = 2 because 10 has 4 divisors {1,2,5,10} among which 2 divisors {1,10} are tetrahedral numbers.
MATHEMATICA
Table[SeriesCoefficient[Sum[x^(k (k + 1) (k + 2)/6)/(1 - x^(k (k + 1) (k + 2)/6)), {k, 1, n}], {x, 0, n}], {n, 1, 120}]
PROG
(PARI) a(n)=sum(k=1, sqrtnint(6*n, 3), n%(k*(k+1)*(k+2)/6)==0) \\ Charles R Greathouse IV, Dec 13 2016
(PARI) isA000292(n)=my(k=sqrtnint(6*n, 3)); k*(k+1)*(k+2)==6*n
a(n)=sumdiv(n, d, isA000292(d)) \\ Charles R Greathouse IV, Dec 13 2016
CROSSREFS
Sequence in context: A056832 A105931 A349163 * A300409 A361631 A247462
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Dec 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 12:09 EDT 2024. Contains 372773 sequences. (Running on oeis4.)