login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349163
a(n) = A064989(gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.
10
1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 10, 1, 2, 1, 6, 1, 2, 3, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 10, 1, 2, 1, 1, 5, 2, 1, 4, 1, 2, 1, 6, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 11, 5, 1, 2, 1, 2, 1
OFFSET
1,2
FORMULA
a(n) = A064989(A342671(n)).
a(n) = n / A349164(n).
MATHEMATICA
Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger@ GCD[##]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 105] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI)
A003961(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A064989(n) = { my(f=factor(n)); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for(i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f); };
A349163(n) = A064989(gcd(sigma(n), A003961(n)));
CROSSREFS
Cf. A000203, A003961, A342671, A349161, A349162, A349165 (positions of 1's), A349166 (of terms > 1).
Cf. A349144 and A349168 [positions where a(n) is / is not relatively prime with A349164(n) = n/a(n)].
Sequence in context: A045887 A056832 A105931 * A279495 A300409 A361631
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 09 2021
STATUS
approved