login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128593
Column 1 of triangle A128592; a(n) = coefficient of q^(n+2) in the q-analog of the odd double factorials (2n+3)!! for n>=0.
5
1, 3, 12, 45, 170, 644, 2451, 9365, 35908, 138104, 532589, 2058782, 7975216, 30951921, 120326060, 468473348, 1826415556, 7129330988, 27860219331, 108984557708, 426730087879, 1672310507262, 6558840830680, 25742937514814, 101108341344396, 397368218111003
OFFSET
0,2
LINKS
FORMULA
a(n) = [q^(n+2)] Product_{j=1..n+2} (1-q^(2j-1))/(1-q) for n>=0.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
simplify(b(n-1)*(1-q^(2*n-1))/(1-q)))
end:
a:= n-> coeff(b(n+2), q, n+2):
seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2021
MATHEMATICA
a[n_] := SeriesCoefficient[Product[(1-q^(2j-1))/(1-q), {j, 1, n+2}], {q, 0, n+2}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 27 2024 *)
PROG
(PARI) {a(n)=polcoeff(prod(j=1, n+2, (1-q^(2*j-1))/(1-q)), n+2, q)}
CROSSREFS
Cf. A128592; A128080; A001147 ((2n-1)!!); A128594 (column 2), A128595 (row sums).
Sequence in context: A064017 A005320 A062561 * A359813 A085481 A030195
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 12 2007
STATUS
approved