login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064017
Number of ternary trees (A001764) with n nodes and maximal diameter.
9
1, 3, 12, 45, 162, 567, 1944, 6561, 21870, 72171, 236196, 767637, 2480058, 7971615, 25509168, 81310473, 258280326, 817887699, 2582803260, 8135830269, 25569752274, 80196041223, 251048476872, 784526490225, 2447722649502
OFFSET
1,2
COMMENTS
A problem important for polymer science because it counts the trees having unbranched branches; they are called "combs".
Equals (1, 3, 9, 27, 81, ...) convolved with (1, 0, 3, 9, 27, 81, ...). Example: a(5) = 162 = (81, 27, 9, 3, 1) dot (1, 0, 3, 9, 27) = 81 + 3*27. - Gary W. Adamson, Jul 31 2010
Floretion Algebra Multiplication Program, FAMP Code: lesforseq[ - 'i + 'j - 'kk' - 'ki' - 'kj' ], vesforseq(n) = 3^n, tesforseq = A006234
FORMULA
a(n) = 3*a(n-1) + 3^(n-2).
a(n) = (n+1)*3^(n-2), for n > 1.
From Paul Barry, Sep 05 2003: (Start)
a(n) = (n+2)3^(n-1) + 0^n/3 (offset 0).
a(n) = A025192(n) + A027471(n). (End)
A006234(n+4) - a(n+2) = 3^n. - Creighton Dement, Mar 01 2005
a(n+1) = Sum_{k=0..n} A196389(n,k)*3^k. - Philippe Deléham, Oct 31 2011
G.f.: (1 - 3*x + 3*x^2)*x/(1 - 3*x)^2. - Philippe Deléham, Oct 31 2011
a(n) = 6*a(n-1) - 9*a(n-2), with a(1)=1, a(2)=3, a(3)=12. - Harvey P. Dale, Feb 07 2012
E.g.f.: (exp(3*x)*(1 + 3*x) - 1)/9. - Stefano Spezia, Mar 05 2020
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=1} 1/a(n) = 27*log(3/2) - 19/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = 17/2 - 27*log(4/3). (End)
EXAMPLE
a(5) = 162 because we can write (5+1)*3^(5-2) = 6*3^3 = 6*27.
MAPLE
a:=n->ceil(sum(3^(n-2), j=0..n)): seq(a(n), n=1..26); # Zerinvary Lajos, Jun 05 2008
MATHEMATICA
Join[{1}, Table[(n+1)3^(n-2), {n, 2, 30}]] (* or *) Join[{1}, LinearRecurrence[ {6, -9}, {3, 12}, 30]] (* Harvey P. Dale, Feb 07 2012 *)
PROG
(PARI) { for (n=1, 200, if (n>1, a=(n + 1)*p; p*=3, a=p=1); write("b064017.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 06 2009
(PARI) a(n)=if(n==1, 1, (n+1)*3^(n-2)); \\ Joerg Arndt, May 06 2013
(SageMath)
@CachedFunction
def BB(n, k, x): # modified cardinal B-splines
if n == 1: return 0 if (x < 0) or (x >= k) else 1
return x*BB(n-1, k, x) + (n*k-x)*BB(n-1, k, x-k)
def EulerianPolynomial(n, k, x):
if n == 0: return 1
return add(BB(n+1, k, k*m+1)*x^m for m in (0..n))
def A064017(n) : return 3^(n-1)*EulerianPolynomial(1, n-1, 1/3) if n != 1 else 1
[A064017(n) for n in (1..25)] # Peter Luschny, May 04 2013
KEYWORD
nonn,nice,easy
AUTHOR
Danail Bonchev (bonchevd(AT)aol.com), Sep 07 2001
STATUS
approved