The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006234 a(n) = n*3^(n-4). (Formerly M3496) 29
 1, 4, 15, 54, 189, 648, 2187, 7290, 24057, 78732, 255879, 826686, 2657205, 8503056, 27103491, 86093442, 272629233, 860934420, 2711943423, 8523250758, 26732013741, 83682825624, 261508830075, 815907549834, 2541865828329 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,2 COMMENTS For n >= 1 a(n) is also the determinant of the n-3 X n-3 matrix with 4's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001 a(n+3) = det(M(n)) where M(n) is the n X n matrix with m(i,i) = 4, m(i,j) = i/j for i != j. - Benoit Cloitre, Feb 01 2003 Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 2*m(i-1,j-1). - Benoit Cloitre, Jun 13 2003 a(n+3) is the number of words of length n on {A, B, C, D} with no D appearing anywhere to the right of an A. - Rob Pratt, Aug 04 2004 Number of spanning trees in the book graph of order n-2, i.e., S_{n-2} X P_2 (S_k = the star graph on k nodes) (conjectured). This conjecture is true - see Doslic (2013). - N. J. A. Sloane, Dec 28 2013 a(n+3) = sum of the n-th row of A112626. - Ross La Haye, Jan 11 2006 Conjecture: a(n+2) is the total number of parts used in the compositions of n if the parts can be runs of any length from 1 to n, and contain any integers from 1 to n. (The number of such compositions is given by A000244(n-1).) - Gregory L. Simay, May 27 2017 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 3..1000 Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607. Guillermo Esteban, Clemens Huemer, and Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020. Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Eric Weisstein's World of Mathematics, Book Graph. Eric Weisstein's World of Mathematics, Spanning Tree. Index entries for linear recurrences with constant coefficients, signature (6,-9). FORMULA G.f.: (1-2x)/(1-3x)^2. - Simon Plouffe in his 1992 dissertation. G.f.: 2F1(1,4;3;3x). - R. J. Mathar, Aug 09 2015 From Amiram Eldar, Jan 18 2021: (Start) Sum_{n>=1} 1/a(n) = 81*log(3/2). Sum_{n>=1} (-1)^(n+1)/a(n) = 81*log(4/3). (End) E.g.f.: x*(exp(3*x) - 3*x - 1)/27. - Stefano Spezia, Mar 04 2023 EXAMPLE For n=3, the total number of parts is (3+2)3^(3+2-4)=(5)(3)=15 (each part indicated by "[]"): ; [2,1]; [1,2]; ,; ,; [1,1,1]; [1,1],; ,[1,1]; ,,. Note that these 15 parts are arranged into 9 = A000244(3-1)compositions. - Gregory L. Simay, May 27 2017 MATHEMATICA Table[n 3^(n - 4), {n, 3, 27}] (* or *) CoefficientList[Series[(1 - 2 x)/(1 - 3 x)^2, {x, 0, 24}], x] (* Michael De Vlieger, May 28 2017 *) LinearRecurrence[{6, -9}, {1, 4}, 30] (* Harvey P. Dale, Aug 17 2020 *) PROG (Magma) [ n*3^(n-4): n in [3..30] ]; // Vincenzo Librandi, Aug 19 2011 (PARI) a(n)=n*3^(n-4) \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Binomial transform of A001792. Cf. A036290, A050914, A000244. Sequence in context: A227382 A090326 A291032 * A094821 A071723 A001559 Adjacent sequences: A006231 A006232 A006233 * A006235 A006236 A006237 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 11:35 EDT 2023. Contains 365501 sequences. (Running on oeis4.)