login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n*3^(n-4).
(Formerly M3496)
34

%I M3496 #100 Mar 28 2024 23:53:53

%S 1,4,15,54,189,648,2187,7290,24057,78732,255879,826686,2657205,

%T 8503056,27103491,86093442,272629233,860934420,2711943423,8523250758,

%U 26732013741,83682825624,261508830075,815907549834,2541865828329

%N a(n) = n*3^(n-4).

%C For n >= 1 a(n) is also the determinant of the n-3 X n-3 matrix with 4's on the diagonal and 1's elsewhere. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 06 2001

%C a(n+3) = det(M(n)) where M(n) is the n X n matrix with m(i,i) = 4, m(i,j) = i/j for i != j. - _Benoit Cloitre_, Feb 01 2003

%C Main diagonal of array defined by m(1,j) = j; m(i,1) = i and m(i,j) = m(i-1,j) + 2*m(i-1,j-1). - _Benoit Cloitre_, Jun 13 2003

%C a(n+3) is the number of words of length n on {A, B, C, D} with no D appearing anywhere to the right of an A. - _Rob Pratt_, Aug 04 2004

%C Number of spanning trees in the book graph of order n-2, i.e., S_{n-2} X P_2 (S_k = the star graph on k nodes) (conjectured). This conjecture is true - see Doslic (2013). - _N. J. A. Sloane_, Dec 28 2013

%C Conjecture: a(n+2) is the total number of parts used in the compositions of n if the parts can be runs of any length from 1 to n, and contain any integers from 1 to n. (The number of such compositions is given by A000244(n-1).) - _Gregory L. Simay_, May 27 2017

%C a(n+3) is the number of words of length n defined on 4 letters where one of the letters is used at most once. - _Enrique Navarrete_, Mar 14 2024

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A006234/b006234.txt">Table of n, a(n) for n = 3..1000</a>

%H Tomislav Doslic, <a href="http://dx.doi.org/10.1007/s10910-013-0167-2">Planar polycyclic graphs and their Tutte polynomials</a>, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.

%H Guillermo Esteban, Clemens Huemer, and Rodrigo I. Silveira, <a href="https://arxiv.org/abs/2003.00524">New production matrices for geometric graphs</a>, arXiv:2003.00524 [math.CO], 2020.

%H Germain Kreweras, <a href="http://dx.doi.org/10.1016/0095-8956(78)90021-7">Complexité et circuits Eulériens dans les sommes tensorielles de graphes</a>, J. Combin. Theory, B 24 (1978), 202-212.

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BookGraph.html">Book Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SpanningTree.html">Spanning Tree</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-9).

%F G.f.: (1-2*x)/(1-3*x)^2. - _Simon Plouffe_ in his 1992 dissertation.

%F a(n+3) = Sum_{k=0..n} A112626(n, k). - _Ross La Haye_, Jan 11 2006

%F G.f.: Hypergeometric2F1([1,4],[3],3*x). - _R. J. Mathar_, Aug 09 2015

%F From _Amiram Eldar_, Jan 18 2021: (Start)

%F Sum_{n>=1} 1/a(n) = 81*log(3/2).

%F Sum_{n>=1} (-1)^(n+1)/a(n) = 81*log(4/3). (End)

%F E.g.f.: x*(exp(3*x) - 3*x - 1)/27. - _Stefano Spezia_, Mar 04 2023

%F E.g.f. (with offset 0): exp(3*x)*(1+x). - _Enrique Navarrete_, Mar 14 2024

%e For n=3, the total number of parts is (3+2)3^(3+2-4)=(5)(3)=15 (each part indicated by "[]"): [3]; [2,1]; [1,2]; [2],[1]; [1],[2]; [1,1,1]; [1,1],[1]; [1],[1,1]; [1],[1],[1]. Note that these 15 parts are arranged into 9 = A000244(3-1)compositions. - _Gregory L. Simay_, May 27 2017

%t Table[n 3^(n-4), {n, 3, 30}] (* or *)

%t CoefficientList[Series[(1-2 x)/(1-3 x)^2, {x,0,30}], x] (* _Michael De Vlieger_, May 28 2017 *)

%t LinearRecurrence[{6,-9},{1,4},30] (* _Harvey P. Dale_, Aug 17 2020 *)

%o (Magma) [ n*3^(n-4): n in [3..30] ]; // _Vincenzo Librandi_, Aug 19 2011

%o (PARI) a(n)=n*3^(n-4) \\ _Charles R Greathouse IV_, Sep 24 2015

%o (SageMath) [n*3^(n-4) for n in range(3,31)] # _G. C. Greubel_, Dec 27 2023

%Y Binomial transform of A001792.

%Y Cf. A000244, A036290, A050914, A112626.

%K nonn,easy

%O 3,2

%A _N. J. A. Sloane_