login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128580
Expansion of phi(x^3) * psi(x^4) - x * phi(x) * psi(x^12) in powers of x where phi(), psi() are Ramanujan theta functions.
16
1, -1, -2, 2, 1, -2, 0, 2, 0, 0, -2, 0, 3, -1, -2, 2, 2, -4, 0, 0, 0, 0, -2, 0, 3, 0, -2, 4, 0, -2, 0, 2, 0, 0, 0, 0, 2, -3, -4, 2, 1, -2, 0, 2, 0, 0, -2, 0, 2, -2, -2, 2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 0, -4, 2, 0, -2, 0, 2, 0, 0, 0, 0, 4, -3, -2, 2, 0, -4, 0, 2, 0, 0, -4, 0, 1, 0, -2, 6, 2, -2, 0, 0, 0, 0, -2, 0, 2, 0, -2, 2, 0, -4, 0, 0, 0
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 7 (mod 24), b(p^e) = (e+1)* (-1)^e if p == 5, 11 (mod 24), b(p^e) = (1+(-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, -2, 0, 0, -1, -1, -1, -1, 0, -2, -1, -2, -1, -2, 0, -1, -1, -1, -1, 0, 0, -2, -1, -2, ...].
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11)= 0.
G.f.: Product_{k>0} (1 - x^(8*k)) * (1 - x^(12*k))^2 / ((1 + x^k) * (1 + x^(2*k))^2 * (1 - x^(3*k)) * (1 + x^(12*k))).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} (x^k - x^(3*k)) / (1 + x^(4*k)) * Kronecker(-12, k) = Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) * Kronecker(2, k).
a(n) = A128581(2*n + 1) = A115660(2*n + 1). a(3*n + 2) = -2 * A128582(n). a(12*n) = A113780(n).
a(2*n) = A259668(n). a(3*n + 1) = - A128580(n). - Michael Somos, Jul 12 2015
EXAMPLE
G.f. = 1 - x - 2*x^2 + 2*x^3 + x^4 - 2*x^5 + 2*x^7 - 2*x^10 + 3*x^12 + ...
G.f. = q - q^3 - 2*q^5 + 2*q^7 + q^9 - 2*q^11 + 2*q^15 - 2*q^21 + 3*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jul 12 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, kronecker(-12, d) * kronecker(2, n/d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^24 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 11 2007
STATUS
approved