OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = (-1)^e, b(p^e) = e+1 if p == 1, 7 (mod 24), b(p^e) = (e+1)* (-1)^e if p == 5, 11 (mod 24), b(p^e) = (1+(-1)^e)/2 if p == 13, 17, 19, 23 (mod 24).
Euler transform of period 24 sequence [ -1, -2, 0, 0, -1, -1, -1, -1, 0, -2, -1, -2, -1, -2, 0, -1, -1, -1, -1, 0, 0, -2, -1, -2, ...].
a(12*n + 6) = a(12*n + 8) = a(12*n + 9) = a(12*n + 11)= 0.
G.f.: Product_{k>0} (1 - x^(8*k)) * (1 - x^(12*k))^2 / ((1 + x^k) * (1 + x^(2*k))^2 * (1 - x^(3*k)) * (1 + x^(12*k))).
G.f.: Sum_{k>=0} a(k) * x^(2*k + 1) = Sum_{k>0} (x^k - x^(3*k)) / (1 + x^(4*k)) * Kronecker(-12, k) = Sum_{k>0} (x^k + x^(3*k)) / (1 + x^(2*k) + x^(4*k)) * Kronecker(2, k).
EXAMPLE
G.f. = 1 - x - 2*x^2 + 2*x^3 + x^4 - 2*x^5 + 2*x^7 - 2*x^10 + 3*x^12 + ...
G.f. = q - q^3 - 2*q^5 + 2*q^7 + q^9 - 2*q^11 + 2*q^15 - 2*q^21 + 3*q^25 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, x^3] EllipticTheta[ 2, 0, x^2] - EllipticTheta[ 3, 0, x] EllipticTheta[ 2, 0, x^6]) / (2 x^(1/2)), {x, 0, n}]; (* Michael Somos, Jul 12 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n = 2*n + 1; sumdiv(n, d, kronecker(-12, d) * kronecker(2, n/d)))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)^2 * eta(x^24 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 11 2007
STATUS
approved