login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255927
a(n) = (3/4) * Sum_{k>=0} (3*k)^n/4^k.
11
1, 1, 5, 33, 285, 3081, 40005, 606033, 10491885, 204343641, 4422082005, 105265315233, 2733583519485, 76902684021801, 2329889536156005, 75629701786875633, 2618654297178083085, 96336948993312237561, 3752590641305604502005, 154294551397830418471233, 6677999524135208461382685
OFFSET
0,3
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the Log-normal distribution, arXiv:quant-ph/0303030, 2003.
P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the Log-normal distribution, J. Phys. A: Math. Gen. 36, (2003), L273.
Eric Weisstein's World of Mathematics, Lerch Transcendent
FORMULA
a(n) = Sum_{k>=0} Stirling2(n,k)*k!*3^(n-k).
E.g.f.: 3/(4-exp(3*x)).
Special values of the generalized hypergeometric function n_F_(n-1):
a(n) = (3^(n+1)/16) * hypergeom([2,2,..2],[1,1,..1],1/4), where the sequence in the first square bracket ("upper" parameters) has n elements all equal to 2 whereas the sequence in the second square bracket ("lower" parameters) has n-1 elements all equal to 1.
Example: a(5) = 729 * hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
a(n) is the n-th moment of the discrete weight function W(x) = (3/4)*sum(k>=0, Dirac(x-3*k)/4^k), n>=1.
a(n) ~ n! * 3^(n+1) / ((log(2))^(n+1) * 2^(n+3)). - Vaclav Kotesovec, Jul 09 2018
G.f.: Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - 3*k*x). - Ilya Gutkovskiy, Apr 04 2019
a(n) = A_{4}(n) where A_{n}(x) are the Eulerian polynomials as defined in A326323. - Peter Luschny, Jun 27 2019
EXAMPLE
a(5) = 729*hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.
MAPLE
S:= series(3/(4-exp(3*x)), x, 51):
seq(coeff(S, x, n)*n!, n=0..50); # Robert Israel, Sep 03 2015
seq(add(combinat:-eulerian1(n, k)*4^k, k=0..n), n=0..20); # Peter Luschny, Jun 27 2019
MATHEMATICA
a[n_] := 3^(n+1)/4 HurwitzLerchPhi[1/4, -n, 0];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Sep 18 2018 *)
Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 4^k, {k, 0, n}], {n, 0, 20}] (* Jean-François Alcover, Jul 13 2019, after Peter Luschny *)
PROG
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*k!*3^(n-k)); \\ Michel Marcus, Sep 03 2015
KEYWORD
nonn
AUTHOR
Karol A. Penson, Sep 03 2015
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 18 2018
STATUS
approved