login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255928
Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).
5
1, 1, 4, 44, 1025, 41693, 2617128, 234091692, 28251572652, 4421489003700, 870650503128708, 210629395976568828, 61405707768736724472, 21231253444779700476672, 8589776776743377081599500, 4020181599664131540547091076, 2155088041310451318611119556661
OFFSET
0,3
COMMENTS
It appears that this sequence is integer valued.
The o.g.f. A(x) = 1 + x + 4*x^2 + 44*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x) ) is the o.g.f. for A094088.
This sequence is the particular case m = 1 of the following general conjecture.
Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k) *u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) ) has integer coefficients.
For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2) and A255930(m = 3).
Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.
FORMULA
O.g.f.: exp(x + 7*x^2/2 + 121*x^3/3 + 3907*x^4/4 + ...) = 1 + x + 4*x^2 + 44*x^3 + 1025*x^4 + ....
a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A094088(n-k)*a(k) for n >= 1.
MAPLE
A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:
A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:
seq(A255928(n), n = 0 .. 16);
CROSSREFS
Cf. A094088, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2), A255930(m = 3).
Sequence in context: A374279 A301942 A348130 * A137783 A136552 A155556
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 11 2015
STATUS
approved