login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).
5

%I #5 Mar 16 2015 02:02:42

%S 1,1,4,44,1025,41693,2617128,234091692,28251572652,4421489003700,

%T 870650503128708,210629395976568828,61405707768736724472,

%U 21231253444779700476672,8589776776743377081599500,4020181599664131540547091076,2155088041310451318611119556661

%N Expansion of exp( Sum_{n >= 1} A094088(n)*x^n/n ).

%C It appears that this sequence is integer valued.

%C The o.g.f. A(x) = 1 + x + 4*x^2 + 44*x^3 + ... for this sequence is such that 1 + x*d/dx( log(A(x) ) is the o.g.f. for A094088.

%C This sequence is the particular case m = 1 of the following general conjecture.

%C Let m be an integer and consider the sequence u(n) defined by the recurrence u(n) = m*Sum_{k = 0..n-1} binomial(2*n,2*k) *u(k) with the initial condition u(0) = 1. Then the expansion of exp( Sum_{n >= 1} u(n)*x^n/n ) ) has integer coefficients.

%C For cases see A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2) and A255930(m = 3).

%C Note that u(n), as a polynomial in the variable m, is the n-th row generating polynomial of A241171.

%F O.g.f.: exp(x + 7*x^2/2 + 121*x^3/3 + 3907*x^4/4 + ...) = 1 + x + 4*x^2 + 44*x^3 + 1025*x^4 + ....

%F a(0) = 1 and a(n) = 1/n*Sum_{k = 0..n-1} A094088(n-k)*a(k) for n >= 1.

%p #A255928

%p A094088 := proc (n) option remember; if n = 0 then 1 else add(binomial(2*n, 2*k)*A094088(k), k = 0 .. n-1) end if; end proc:

%p A255928 := proc (n) option remember; if n = 0 then 1 else add(A094088(n-k)*A255928(k), k = 0 .. n-1)/n end if; end proc:

%p seq(A255928(n), n = 0 .. 16);

%Y Cf. A094088, A241171, A255926(m = -3), A255882(m = -2), A255881(m = -1), A255929(m = 2), A255930(m = 3).

%K nonn,easy

%O 0,3

%A _Peter Bala_, Mar 11 2015