login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144792
EXP transform of A140585.
2
1, 1, 5, 33, 282, 2938, 36029, 507440, 8058990, 142315830, 2763775025, 58498072273, 1339545500214, 32980132065364, 868417100538399, 24344702489881998, 723694354351500431, 22733368105181643193, 752291980101845144878, 26153153055424960528533
OFFSET
0,3
COMMENTS
Stirling transform of A143463.
LINKS
FORMULA
E.g.f: (1/exp(1)) exp( 1 / prod_{k=1}^{inf} (1 - (exp(x)-1)^k / k!) ).
a(n) = sum_{k=1..n} C(n-1,k-1) A140585(k) a(n-k).
With S2(n,k) as the Stirling number of the second kind we have
a(n) = sum_{k=1..n} A143463(n) S2(n,k).
MAPLE
with(numtheory): with(combinat): b:= proc(k) option remember; add(d/d!^(k/d), d=divisors(k)) end: c:= proc(n) option remember; `if`(n=0, 1, add((n-1)!/(n-k)!* b(k)* c(n-k), k=1..n)) end: aa:= n-> add(stirling2(n, k) *c(k), k=1..n): a:= proc(n) option remember; `if`(n=0, 1, aa(n)+ add(binomial(n-1, k-1) *aa(k) *a(n-k), k=1..n-1)) end: seq(a(n), n=1..20); # Alois P. Heinz, Oct 10 2008
MATHEMATICA
b[k_] := b[k] = DivisorSum[k, #/#!^(k/#)&]; c[n_] := c[n] = If[n==0, 1, Sum[(n-1)!/(n-k)!*b[k]*c[n-k], {k, 1, n}]]; aa[n_] := Sum[StirlingS2[n, k]*c[k], {k, 1, n}]; a[n_] := a[n] = If[n==0, 1, aa[n] + Sum[Binomial[ n-1, k-1]*aa[k]*a[n-k], {k, 1, n-1}]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 25 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A378091 A120733 A218496 * A291846 A255927 A001828
KEYWORD
nonn
AUTHOR
Thomas Wieder, Sep 21 2008
EXTENSIONS
More terms from Alois P. Heinz, Oct 10 2008
STATUS
approved