login
A218496
4th iteration of the hyperbinomial transform on the sequence of 1's.
3
1, 5, 33, 281, 2993, 38705, 592489, 10516441, 212841889, 4845154913, 122664558905, 3421333467689, 104297273041969, 3451364116327249, 123251578626936841, 4725537745859375705, 193647372258547916609, 8447809104669814884545, 390938955429073736493145
OFFSET
0,2
COMMENTS
See A088956 for the definition of the hyperbinomial transform.
LINKS
FORMULA
E.g.f.: exp(x) * (-LambertW(-x)/x)^4.
a(n) = Sum_{j=0..n} 4 * (n-j+4)^(n-j-1) * C(n,j).
Hyperbinomial transform of A089464.
a(n) ~ 4*exp(4+exp(-1))*n^(n-1). - Vaclav Kotesovec, Aug 16 2013
MAPLE
a:= n-> add(4*(n-j+4)^(n-j-1)*binomial(n, j), j=0..n):
seq (a(n), n=0..20);
CROSSREFS
Column k=4 of A144303.
Sequence in context: A316158 A378091 A120733 * A144792 A291846 A255927
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 30 2012
STATUS
approved