login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218496
4th iteration of the hyperbinomial transform on the sequence of 1's.
3
1, 5, 33, 281, 2993, 38705, 592489, 10516441, 212841889, 4845154913, 122664558905, 3421333467689, 104297273041969, 3451364116327249, 123251578626936841, 4725537745859375705, 193647372258547916609, 8447809104669814884545, 390938955429073736493145
OFFSET
0,2
COMMENTS
See A088956 for the definition of the hyperbinomial transform.
LINKS
FORMULA
E.g.f.: exp(x) * (-LambertW(-x)/x)^4.
a(n) = Sum_{j=0..n} 4 * (n-j+4)^(n-j-1) * C(n,j).
Hyperbinomial transform of A089464.
a(n) ~ 4*exp(4+exp(-1))*n^(n-1). - Vaclav Kotesovec, Aug 16 2013
MAPLE
a:= n-> add(4*(n-j+4)^(n-j-1)*binomial(n, j), j=0..n):
seq (a(n), n=0..20);
CROSSREFS
Column k=4 of A144303.
Sequence in context: A316158 A378091 A120733 * A144792 A291846 A255927
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 30 2012
STATUS
approved