login
A378091
E.g.f. satisfies A(x) = exp(x * (1-x)^3 * A(x)) / (1-x)^4.
1
1, 5, 33, 280, 3009, 40456, 670351, 13428794, 318341841, 8747362540, 273595272231, 9595433139238, 372786185735497, 15885841209363152, 736549352642825247, 36906793949098033906, 1987212351128733260577, 114415986259681057007956, 7014281833059332148174007
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-x/(1-x)) )/(1-x)^4.
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+3,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n+3, n-k)/k!);
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Seiichi Manyama, Nov 16 2024
STATUS
approved