login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352410
Expansion of e.g.f. LambertW( -x/(1-x) ) / (-x).
28
1, 2, 9, 67, 717, 10141, 179353, 3816989, 95076537, 2714895433, 87457961421, 3138260371225, 124147801973605, 5368353187693757, 251928853285058433, 12752446755011776741, 692625349011401620209, 40178978855796929378065, 2479383850197948228950293
OFFSET
0,2
COMMENTS
An interesting property of this e.g.f. A(x) is that the sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = LambertW( -x/(1-x) ) / (-x).
(2) A(x) = exp( x*A(x) ) / (1-x).
(3) A(x) = log( (1-x) * A(x) ) / x.
(4) A( x/(exp(x) + x) ) = exp(x) + x.
(5) A(x) = (1/x) * Series_Reversion( x/(exp(x) + x) ).
(6) Sum_{k=0..n} [x^k] 1/A(x)^n = 0, for n > 1.
(7) [x^(n+1)/(n+1)!] 1/A(x)^n = -n for n >= (-1).
a(n) ~ (1 + exp(1))^(n + 3/2) * n^(n-1) / exp(n + 1/2). - Vaclav Kotesovec, Mar 15 2022
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n,k)/k!. - Seiichi Manyama, Sep 24 2022
EXAMPLE
E.g.f.: A(x) = 1 + 2*x + 9*x^2/2! + 67*x^3/3! + 717*x^4/4! + 10141*x^5/5! + 179353*x^6/6! + 3816989*x^7/7! + ...
such that A(x) = exp(x*A(x)) / (1-x), where
exp(x*A(x)) = 1 + x + 5*x^2/2! + 40*x^3/3! + 449*x^4/4! + 6556*x^5/5! + 118507*x^6/6! + ... + A052868(n)*x^n/n! + ...
which equals LambertW(-x/(1-x)) * (1-x)/(-x).
Related table.
Another defining property of the e.g.f. A(x) is illustrated here.
The table of coefficients of x^k/k! in 1/A(x)^n begins:
n=1: [1, -2, -1, -7, -71, -961, -16409, -339571, ...];
n=2: [1, -4, 6, -2, -24, -362, -6644, -144538, ...];
n=3: [1, -6, 21, -33, -3, -63, -1395, -34275, ...];
n=4: [1, -8, 44, -148, 232, -4, -152, -4876, ...];
n=5: [1, -10, 75, -395, 1305, -2045, -5, -355, ...];
n=6: [1, -12, 114, -822, 4224, -13806, 21636, -6, ...];
n=7: [1, -14, 161, -1477, 10381, -52507, 170401, -267043, -7, ...];
...
from which we can illustrate that the partial sum of coefficients of x^k, k=0..n, in 1/A(x)^n equals zero, for n > 1, as follows:
n=1:-1 = 1 + -2;
n=2: 0 = 1 + -4 + 6/2!;
n=3: 0 = 1 + -6 + 21/2! + -33/3!;
n=4: 0 = 1 + -8 + 44/2! + -148/3! + 232/4!;
n=5: 0 = 1 + -10 + 75/2! + -395/3! + 1305/4! + -2045/5!;
n=6: 0 = 1 + -12 + 114/2! + -822/3! + 4224/4! + -13806/5! + 21636/6!;
n=7: 0 = 1 + -14 + 161/2! + -1477/3! + 10381/4! + -52507/5! + 170401/6! + -267043/7!;
...
PROG
(PARI) {a(n) = n!*polcoeff( (1/x)*serreverse( x/(exp(x +x^2*O(x^n)) + x) ), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) my(x='x+O('x^30)); Vec(serlaplace(lambertw(-x/(1-x))/(-x))) \\ Michel Marcus, Mar 17 2022
(PARI) a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(n, k)/k!); \\ Seiichi Manyama, Sep 24 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 15 2022
STATUS
approved