login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102743
Expansion of e.g.f. LambertW(-x)/(x*(x-1)).
3
1, 2, 7, 37, 273, 2661, 32773, 491555, 8715409, 178438681, 4142334501, 107483043735, 3081956918857, 96759352320437, 3300826000845493, 121569984050610331, 4807542796319581089, 203167758634027130289
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n!*Sum_{k=1..n+1} k^(k-1)/k!. - Vladeta Jovovic, Oct 17 2007
a(n) ~ exp(2)/(exp(1)-1) * n^(n-1). - Vaclav Kotesovec, Nov 27 2012
E.g.f.: W(0)/(2-2*x) , where W(k) = 1 + 1/( 1 - x*(k+2)^k/( x*(k+2)^k + (k+1)^k/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
From Seiichi Manyama, May 01 2023: (Start)
E.g.f.: exp(-LambertW(-x))/(1-x).
a(0) = 1; a(n) = n*a(n-1) + (n+1)^(n-1). (End)
MATHEMATICA
CoefficientList[Series[LambertW[-x]/(x*(x-1)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Nov 27 2012 *)
PROG
(PARI) my(x='x+O('x^50)); Vec(serlaplace(lambertw(-x)/(x*(x-1)))) \\ G. C. Greubel, Nov 08 2017
CROSSREFS
Cf. A277506.
Sequence in context: A001028 A116481 A367494 * A195068 A342412 A196916
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Feb 08 2005
STATUS
approved