login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102742 Elite primes: a prime number p is called elite if only a finite number of Fermat numbers 2^(2^n)+1 are quadratic residues mod p. 6
3, 5, 7, 41, 15361, 23041, 26881, 61441, 87041, 163841, 544001, 604801, 6684673, 14172161, 159318017, 446960641, 1151139841, 3208642561, 38126223361, 108905103361, 171727482881, 318093312001, 443069456129, 912680550401, 1295536619521, 1825696645121, 2061584302081 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Křížek, Luca, Shparlinski, & Somer show that a(n) >> n log^2 n. - Charles R Greathouse IV, Jan 25 2017

LINKS

Dennis Martin, Table of n, a(n) for n = 1..29

Alexander Aigner, Über Primzahlen, nach denen (fast) alle Fermatzahlen quadratische Nichtreste sind, Monatsh. Math., Vol. 101 (1986), pp. 85-93; alternative link.

Alain Chaumont and Tom Mueller, All Elite Primes Up to 250 Billion, J. Integer Sequences, Vol. 9 (2006), Article 06.3.8.

Matthew Just, On upper bounds for the count of elite primes, arXiv:2102.00906 [math.NT], 2021.

Michal Křížek, Florian Luca, Igor E. Shparlinski, and Lawrence Somer, On the complexity of testing elite primes, Journal of Integer Sequences, Vol. 14 (2011), Article 11.1.2, 5 pp.

Xiaoquin Li, Verifying Two Conjectures on Generalized Elite Primes, JIS 12 (2009) 09.4.7.

Dennis Martin, Elite Prime Search. [Broken link]

Dennis Martin, Elite Prime Search. [Cached copy, with permission of author]

Dennis Martin, Elite and Anti-Elite Prime Search Methodology [Cached copy, with permission of author]

Tom Müller, Searching for large elite primes, Experimental Mathematics, Vol. 15, Nol. 2 (2006), pp. 183-186.

Tom Muller and A. Reinhart, On generalized Elite Primes, Journal of Integer Sequences, Vol. 11 (2008), Article 08.3.1.

Tom Müller, On the Fermat Periods of Natural Numbers, Journal of Integer Sequences, Vol. 13 (2010), Article 10.9.5.

Tom Müller, On the Exponents of Non-Trivial Divisors of Odd Numbers and a Generalization of Proth's Primality Theorem, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.7.

FORMULA

Sum_{n>=1} 1/a(n) = A344785. - Amiram Eldar, May 30 2021

PROG

(PARI) list_upto(N)={forprime(p=3, N, r=2^valuation(p-1, 2); a=Mod(3, p); v=List(); k=0; while(1, listput(v, a); a=(a-1)^2+1; for(j=1, #v, if(v[j]==a, k=j; break(2)))); for(i=k, #v, znorder(v[i]) % r != 0 && next(2)); print1(p, ", "))} \\ Slow, only for illustration, Jeppe Stig Nielsen, Jan 28 2020

CROSSREFS

Cf. A128852, A344785.

Sequence in context: A130536 A261511 A146972 * A089044 A117646 A064857

Adjacent sequences:  A102739 A102740 A102741 * A102743 A102744 A102745

KEYWORD

nonn

AUTHOR

Tom Mueller, Feb 08 2005; extended Jun 16 2005

EXTENSIONS

a(17) from Tom Mueller, Jul 20 2005

a(18)-a(21) from Tom Mueller, Apr 18 2006

6 further terms from Tom Mueller, Apr 16 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 08:56 EDT 2022. Contains 354049 sequences. (Running on oeis4.)