login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363965
Binary palindromic numbers whose digit sum and aliquot sum are also binary palindromic.
1
1, 3, 5, 7, 45, 313, 403, 1501, 1619, 2193, 2661, 5349, 11997, 21477, 21653, 24029, 27499, 81017, 98563, 104147, 116423, 251823, 269761, 284881, 288049, 320057, 337189, 344037, 368077, 400067, 410899, 413779, 428683, 440171, 475159, 523007, 678309, 823059
OFFSET
1,2
LINKS
EXAMPLE
45 is a term since 45 = 101101_2, A007953(45) = 4+5 = 9 = 1001_2, A001065(45) = 33 = 100001_2, and all of those binary expansions are palindromes.
MATHEMATICA
binPalQ[n_] := PalindromeQ[IntegerDigits[n, 2]]; Select[Range[10^6], AllTrue[{#, Plus @@ IntegerDigits[#], DivisorSigma[1, #] - #}, binPalQ] &] (* Amiram Eldar, Jul 28 2023 *)
PROG
(Python)
from sympy import divisor_sigma as s1
def bp(n): return (b:=bin(n)[2:])==b[::-1]
def ok(n): return n and bp(n) and bp(sum(map(int, str(n)))) and bp(s1(n)-n)
print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 24 2023
CROSSREFS
Subsequence of A006995.
Sequence in context: A261511 A146972 A102742 * A089044 A117646 A064857
KEYWORD
nonn,base
AUTHOR
Aakash Gautam, Jul 12 2023
EXTENSIONS
a(6) and beyond from Michael S. Branicky, Jul 24 2023
STATUS
approved