login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089044
Numbers n such that abs(d(n) - log(n) + 1 - 2*gamma) is a decreasing sequence, where d(n) is the number of divisors A000005(n) and gamma is Euler's constant A001620.
2
1, 3, 5, 7, 46, 2514, 2522, 2526, 2534, 2536, 2542, 2546, 2553, 2555, 18873, 139454, 139475, 7614005, 7614010, 7614015, 7614022, 7614030, 7614033, 7614034, 7614056, 7614062, 7614066, 7614069, 7614079, 7614082, 7614086, 7614087, 7614088
OFFSET
1,2
REFERENCES
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, Theorem 320.
LINKS
Leroy Quet, Two number-theoretical limits (& bonus sum). Thread in NG sci.math, Oct 30 2003.
Eric Weisstein's World of Mathematics, Euler-Mascheroni Constant
EXAMPLE
a(5)=46 because d(46) - log(46) + 1 - 2*0.5772156649... = 0.016927274... is less than
abs(d(7) - log(7) + 1 - 2*0.5772156649...) = abs(-0.100341479...) with d(46)=4 and d(7)=2.
MATHEMATICA
f[n_] := N[ Abs[ DivisorSigma[0, n] - Log@ n + 1 - 2 EulerGamma], 32]; k = 1; lst = {}; mx = Infinity; While[k < 8000000, a = f@k; If[a < mx, mx = a; AppendTo[lst, k]]; k++]; lst (* Robert G. Wilson v, Dec 11 2017 *)
PROG
(PARI)
d=1.0; n=0; \
for(j=2, 16, kmin=round(exp(j-2*Euler+1-2*d)); kmax=round(exp(j-2*Euler+1+2*d)); \
for(k=kmin, kmax, dd=abs(numdiv(k)-log(k)+1-2*Euler); \
if(dd<d, d=dd; print1(k, ", "))))
\\ Hugo Pfoertner, Dec 08 2017
CROSSREFS
Cf. A000005 = number of divisors of n, A001620 = Euler's constant gamma, A089084.
Sequence in context: A146972 A102742 A363965 * A117646 A064857 A065913
KEYWORD
nonn
AUTHOR
Leroy Quet and Hugo Pfoertner, Dec 02 2003
EXTENSIONS
Terms beyond a(5) from Hans Havermann, Dec 02 2003
STATUS
approved