login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089043
a(n) = n!^2 + (-1)^n.
1
0, 5, 35, 577, 14399, 518401, 25401599, 1625702401, 131681894399, 13168189440001, 1593350922239999, 229442532802560001, 38775788043632639999, 7600054456551997440001, 1710012252724199423999999, 437763136697395052544000001, 126513546505547170185215999999
OFFSET
1,2
COMMENTS
p = 2*n+1 is prime iff it divides a(n) (Wilson's theorem) for instance let n=5, p =11 : a(5) = 14399 = 11*1309, so 11 is prime.
FORMULA
a(n) = n^2*(a(n-1)-(-1)^(n-1))+(-1)^n.
EXAMPLE
a(5) = 14399 because 14399=(5!)^2+(-1)^5.
PROG
(PARI) a(n) = n!^2+(-1)^n; \\ Michel Marcus, Oct 02 2016
CROSSREFS
Sequence in context: A011556 A361055 A194927 * A317995 A260075 A317816
KEYWORD
easy,nonn
AUTHOR
Serge Boisse (serge.boisse(AT)aviation-civile.gouv.fr), Dec 02 2003
EXTENSIONS
Offset corrected and edited by Michel Marcus, Oct 02 2016
STATUS
approved