login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n!^2 + (-1)^n.
1

%I #7 Oct 02 2016 17:49:46

%S 0,5,35,577,14399,518401,25401599,1625702401,131681894399,

%T 13168189440001,1593350922239999,229442532802560001,

%U 38775788043632639999,7600054456551997440001,1710012252724199423999999,437763136697395052544000001,126513546505547170185215999999

%N a(n) = n!^2 + (-1)^n.

%C p = 2*n+1 is prime iff it divides a(n) (Wilson's theorem) for instance let n=5, p =11 : a(5) = 14399 = 11*1309, so 11 is prime.

%F a(n) = n^2*(a(n-1)-(-1)^(n-1))+(-1)^n.

%e a(5) = 14399 because 14399=(5!)^2+(-1)^5.

%o (PARI) a(n) = n!^2+(-1)^n; \\ _Michel Marcus_, Oct 02 2016

%K easy,nonn

%O 1,2

%A Serge Boisse (serge.boisse(AT)aviation-civile.gouv.fr), Dec 02 2003

%E Offset corrected and edited by _Michel Marcus_, Oct 02 2016