login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363968
Least number of 1's needed to represent n using only additions +, subtractions -, multiplications *, divisions /, concatenations # and parentheses ().
1
2, 1, 2, 3, 4, 5, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 6, 7, 6, 5, 4, 3, 4, 5, 5, 6, 6, 7, 7, 6, 5, 4, 5, 5, 6, 7, 6, 6, 7, 7, 6, 5, 5, 6, 6, 7, 7, 8, 7, 8, 7, 6, 7, 7, 7, 6, 6, 7, 8, 8, 7, 6, 6, 6, 7, 8, 7, 8, 8, 8, 8, 7, 8, 8, 8, 9, 9, 8, 8, 8, 7, 6, 7, 8, 7, 8, 8, 8, 7, 7, 6, 5, 6, 7, 8, 9, 8, 8, 7, 6, 5
OFFSET
0,1
COMMENTS
Fractions are not allowed as intermediate results.
The unique difference with A362471 is that concatenation is here allowed; in fact, in A362471, concatenation is only allowed for getting repunits as 111 = 1#1#1 but not for getting other integers.
Also, for example, the concatenation of 5 and -3 is not possible, so it should not be interpreted as 5-3 = 2.
The first differences with A362471 in the data appear at n = 16, 19, 20, 21, 29, ... see Example section.
FORMULA
|a(n+1) - a(n)| <= 1; improved by Pontus von Brömssen, Jun 30 2023
a(n) <= A362471(n).
a(n) <= Sum_{k=1..m} a(dk), where d1d2..dm are the decimal digits of n. - Michael S. Branicky, Jun 30 2023
EXAMPLE
For n = 16, 16 = 1 # ((1+1)*(1+1+1)), so a(16) = 6 while A362471(16) = 7.
For n = 19, 19 = 1 # (11-1-1), so a(19) = 5 while A362471(19) = 6.
For n = 20, 20 = (1+1) # (1-1), so a(20) = 4 while A362471(20) = 5.
For n = 31, 31 = (1+1+1) # (1), so a(31) = 4 while A362471(31) = 7.
For n = 43, 43 = (1+1)*((1+1) # (1)) + 1, so a(43) = 6 while A362471(43) = 7.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jun 30 2023
EXTENSIONS
a(72) and beyond from Michael S. Branicky, Jun 30 2023
STATUS
approved