OFFSET
1,1
COMMENTS
Conjecture: For all pairs of relative prime numbers (x, y) there exists at least one number n = 2^m and one prime number p such that p = x^n + y^n. This sequence shows one case of this conjecture where y = x + 1.
EXAMPLE
a(10)=2211377674535255285545615254209921 because A057856(10)=32 and 2211377674535255285545615254209921 = 10^32 + 11^32 = 100000000000000000000000000000000 + 2111377674535255285545615254209921.
PROG
(PARI) a(n) = my(k=1); while (!isprime(p=(n+1)^k + n^k), k++); p; \\ Michel Marcus, Sep 16 2018
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
Tomas Xordan, Jun 02 2007
STATUS
approved