login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102741
a(n) = 3^4 * binomial(n+3, 4).
4
81, 405, 1215, 2835, 5670, 10206, 17010, 26730, 40095, 57915, 81081, 110565, 147420, 192780, 247860, 313956, 392445, 484785, 592515, 717255, 860706, 1024650, 1210950, 1421550, 1658475, 1923831, 2219805, 2548665, 2912760, 3314520, 3756456, 4241160, 4771305, 5349645
OFFSET
1,1
FORMULA
G.f.: 81*x/(1-x)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 11 2009
E.g.f.: (27/8)*x*(24 + 36*x + 12*x^2 + x^3)*exp(x). - G. C. Greubel, May 17 2021
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=1} 1/a(n) = 4/243.
Sum_{n>=1} (-1)^(n+1)/a(n) = 32*log(2)/81 - 64/243. (End)
MAPLE
seq(binomial(n+3, 4)*3^4, n=1..27);
MATHEMATICA
With[{c=3^4}, Table[c Binomial[n+3, 4], {n, 40}]] (* Harvey P. Dale, Mar 12 2011 *)
PROG
(Magma) [3^4*Binomial(n+3, 4): n in [1..30]]; // G. C. Greubel, May 17 2021
(Sage) [3^4*binomial(n+3, 4) for n in (1..30)] # G. C. Greubel, May 17 2021
CROSSREFS
Cf. A027465.
Sequences of the form 3^m*binomial(n+m-1, m): A008585 (m=1), A027468 (m=2), A134171 (m=3), this sequence (m=4), A113335 (m=5).
Sequence in context: A237182 A237176 A357015 * A253495 A253456 A236155
KEYWORD
nonn,easy
AUTHOR
Zerinvary Lajos, Aug 06 2008
STATUS
approved