login
A134171
a(n) = (9/2)*(n-1)*(n-2)*(n-3).
4
0, 0, 0, 27, 108, 270, 540, 945, 1512, 2268, 3240, 4455, 5940, 7722, 9828, 12285, 15120, 18360, 22032, 26163, 30780, 35910, 41580, 47817, 54648, 62100, 70200, 78975, 88452, 98658, 109620, 121365, 133920, 147312, 161568, 176715, 192780, 209790, 227772, 246753
OFFSET
1,4
COMMENTS
Number of n permutations (n>=3) of 4 objects u, v, z, x with repetition allowed, containing n-3=0 u's. Example: if n=3 then n-3 =zero u, a()=27 because we have vzx, vxz, zvx, zxv, xvz, xzv, vvv, zzz, xxx, vvx, vxv, xvv, xxv, xvx, vxx, vvz, vzv, zvv, zzv, zvz, vzz, xzz, zxz, zzx, xxz, xzx, zxx. A027465 formatted as a triangular array: diagonal: 27, 108, 270, 540, 945, 1512. - Zerinvary Lajos, Aug 06 2008
FORMULA
a(n) = 27 * binomial(n-1,3). - Zerinvary Lajos, Aug 06 2008
From Chai Wah Wu, May 29 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
G.f.: 27*x^4/(1-x)^4. (End)
E.g.f.: 27 + (9/2*(x^3-3*x^2+6*x-6))*exp(x). - G. C. Greubel, May 17 2021
a(n) = 27 * A000292(n-3) for n >= 3. - Alois P. Heinz, May 17 2021
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=4} 1/a(n) = 1/18.
Sum_{n>=4} (-1)^n/a(n) = 4*log(2)/9 - 5/18. (End)
MAPLE
seq(27*binomial(n-1, 3), n=1..30); # Zerinvary Lajos, May 18 2008
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, 0, 0, 27}, 50] (* G. C. Greubel, May 29 2016 *)
PROG
(Magma) [(9/2)*(n-1)*(n-2)*(n-3) : n in [1..50]]; // Wesley Ivan Hurt, May 29 2016
CROSSREFS
Cf. A008585, A027465, A027468. - Zerinvary Lajos, Aug 06 2008
Sequence in context: A044278 A044659 A244634 * A129026 A042426 A042424
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 30 2008
STATUS
approved