OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n-1} binomial(n,k)^2 * k! * (n - k)^(n - k - 1).
a(n) ~ (1 + exp(-1))^(n + 3/2) * n^(n-1). - Vaclav Kotesovec, Jan 26 2020
MATHEMATICA
nmax = 18; CoefficientList[Series[-LambertW[-x/(1 - x)]/(1 - x), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Binomial[n, k]^2 k! (n - k)^(n - k - 1), {k, 0, n - 1}], {n, 0, 18}]
PROG
(PARI) seq(n)={Vec(serlaplace(-lambertw(-x/(1 - x) + O(x*x^n)) / (1 - x)), -(n+1))} \\ Andrew Howroyd, Jan 25 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 25 2020
STATUS
approved