login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352408
a(n) = [x^(n+1)] (1+x - x^2*C(x^3))^(n*(2*n+1)) / (n*(2*n+1)), for n >= 1, where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
2
0, 3, 105, 4521, 247509, 16743276, 1358620365, 129050741220, 14072813590533, 1734613925513373, 238643675398832787, 36267490290699148842, 6035968171216586764461, 1092097033048311239037276, 213473299061006718358241931, 44838030511923231603476358240
OFFSET
1,2
COMMENTS
This sequence explores yet another property of the Catalan sequence (A000108).
Conjecture: all terms are divisible by 3. Showing that a(n) = 0 (mod 3) for n >= 1 would consequently prove conjectures involving the g.f. G(x) of A352409, namely: G(x) = 1 + x^3*G(x)^2 (mod 3) and G(x) = C(x^3) (mod 3), where C(x) = 1 + x*C(x)^2.
Note: C(x^3) = C(x)^3 (mod 3), thus 1+x - x^2*C(x^3) = 1+x - x^2*C(x)^3 (mod 3) = 1+x + x*(C(x) - C(x)^2) (mod 3) = 2+x - (1-x)*C(x) (mod 3), where C(x) = 1 + x*C(x)^2.
LINKS
FORMULA
a(n) ~ 2^(n - 1/2) * exp(n - 1/4) * n^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Mar 18 2022
EXAMPLE
Given C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the Catalan function of A000108, which starts C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ... + binomial(2*n,n)/(n+1) * x^n + ...
then
1+x - x^2*C(x^3) = 1 + x - x^2 - x^5 - 2*x^8 - 5*x^11 - 14*x^14 - 42*x^17 - 132*x^20 - 429*x^23 - 1430*x^26 - ...
and the table of coefficients of x^k in (1+x - x^2*C(x^3))^(n*(2*n+1)) begin:
n=1: [1, 3, 0, -5, 0, 0, -7, 3, ...];
n=2: [1, 10, 35, 30, -105, -238, 0, 270, ...];
n=3: [1, 21, 189, 910, 2205, 378, -13321, -33324, ...];
n=4: [1, 36, 594, 5880, 38115, 162756, 407862, 175068, ...];
n=5: [1, 55, 1430, 23265, 263835, 2193191, 13612995, 62337330, ...];
n=6: [1, 78, 2925, 70070, 1201200, 15633540, 159772613, 1305975528, ...];
...
from which the terms a(n) = [x^(n+1)] (1+x - x^2*C(x^3))^(n*(2*n+1))/(n*(2*n+1)) can be derived, for n >= 1, as illustrated by:
a(1) = [x^2] (1+x - x^2*C(x^3))^3 / 3 = 0 / 3 = 0;
a(2) = [x^3] (1+x - x^2*C(x^3))^10 / 10 = 30 / 10 = 3;
a(3) = [x^4] (1+x - x^2*C(x^3))^21 / 21 = 2205 / 21 = 105;
a(4) = [x^5] (1+x - x^2*C(x^3))^36 / 36 = 162756 / 36 = 4521;
a(5) = [x^6] (1+x - x^2*C(x^3))^55 / 55 = 13612995 / 55 = 247509;
a(6) = [x^7] (1+x - x^2*C(x^3))^78 / 78 = 1305975528 / 78 = 16743276;
...
Apparently, all terms computed this way are divisible by 3 (verified for the initial 1201 terms).
PROG
(PARI) {a(n) = my(C3 = (1 - sqrt(1 - 4*x^3 + O(x^(n+3)) ))/(2*x^3));
polcoeff( (1+x - x^2*C3)^(n*(2*n+1)) / (n*(2*n+1)), n+1)}
for(n=1, 21, print1(a(n), ", " ))
CROSSREFS
Cf. A352409.
Sequence in context: A350986 A075528 A359988 * A334776 A346086 A271049
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 16 2022
STATUS
approved