login
A218495
Number of partitions of n^2 into positive cubes.
7
1, 1, 1, 2, 3, 4, 7, 10, 17, 26, 39, 58, 89, 133, 195, 289, 420, 610, 875, 1253, 1778, 2514, 3527, 4937, 6879, 9516, 13115, 18012, 24625, 33503, 45432, 61402, 82677, 110913, 148286, 197722, 262768, 348100, 459791, 605780, 795874, 1042791, 1362800, 1776777
OFFSET
0,4
COMMENTS
a(n) = A003108(A000290(n)).
LINKS
FORMULA
a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * sqrt(n) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(5/2)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Apr 10 2017
a(n) = [x^(n^2)] Product_{k>=1} 1/(1 - x^(k^3)). - Ilya Gutkovskiy, Jun 05 2017
EXAMPLE
n=5: number of partitions of 25 into parts of {1, 8}:
a(5) = #{8+8+8+1, 8+8+9x1, 8+17x1, 25x1} = 4;
n=6: number of partitions of 36 into parts of {1, 8, 27}:
a(6) = #{27+8+1, 27+9x1, 4x8+4x1, 3x8+12x1, 8+8+20x1, 8+28x1, 36x1} = 7;
n=7: number of partitions of 49 into parts of {1, 8, 27}:
a(7) = #{27+8+8+6x1, 27+8+14x1, 27+22x1, 6x8+1, 5x8+9x1, 4x8+17x1, 3x8+25x1, 8+8+33x1, 8+41x1, 49x1} = 10.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))
end:
a:= n-> b(n^2, iroot(n^2, 3)):
seq(a(n), n=0..60); # Alois P. Heinz, Nov 08 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + If[i^3>n, 0, b[n - i^3, i]]]; a[n_] := b[n^2, n^(2/3) // Floor]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
PROG
(Haskell) a218495 = p (tail a000578_list) . (^ 2) where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
(PARI) a(n) = {my(nb=0); forpart(p=n^2, nb += (sum(k=1, #p, ispower(p[k], 3)) == #p); ); nb; } \\ Michel Marcus, Jun 02 2015
(PARI) ok(p)=for(i=1, #p, if(!ispower(p[i], 3), return(0))); 1
a(n)=my(s=1); for(i=8, n^2, forpart(p=i, s+=ok(p), [8, sqrtnint(i, 3)^3])); s \\ Charles R Greathouse IV, Jun 02 2015
CROSSREFS
Sequence in context: A082766 A119016 A082958 * A166012 A060166 A053634
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 31 2012
EXTENSIONS
More terms from Alois P. Heinz, Nov 08 2012
STATUS
approved