|
|
A082766
|
|
Series ratios converge alternately to sqrt(2) and 1+sqrt(1/2).
|
|
5
|
|
|
1, 1, 2, 3, 4, 7, 10, 17, 24, 41, 58, 99, 140, 239, 338, 577, 816, 1393, 1970, 3363, 4756, 8119, 11482, 19601, 27720, 47321, 66922, 114243, 161564, 275807, 390050, 665857, 941664, 1607521, 2273378, 3880899, 5488420, 9369319, 13250218, 22619537
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
a(2n+2)/a(2n+1) converges to sqrt(2).
a(2n+1)/a(2n) converges to 1+sqrt(1/2).
a(n+2)/a(n) converges to 1+sqrt(2).
|
|
LINKS
|
|
|
FORMULA
|
a(2n) = a(2n-1) + a(2n-2); a(2n+1) = a(2n) + a(2n-2)
O.g.f.: x*(1+x-x^2)*(x^2+1)/(1-2*x^2-x^4). - R. J. Mathar, Aug 08 2008
|
|
MATHEMATICA
|
Rest[CoefficientList[Series[x (1 - x^2 + x) (x^2 + 1)/(1 - 2 x^2 - x^4), {x, 0, 50}], x]] (* G. C. Greubel, Nov 28 2017 *)
LinearRecurrence[{0, 2, 0, 1}, {1, 1, 2, 3, 4}, 50] (* Harvey P. Dale, Dec 15 2022 *)
|
|
PROG
|
(Haskell)
import Data.List (transpose)
a082766 n = a082766_list !! (n-1)
a082766_list = concat $ transpose [a052542_list, tail a001333_list]
(PARI) x='x+O('x^30); Vec(x*(1+x-x^2)*(x^2+1)/(1-2*x^2-x^4)) \\ G. C. Greubel, Nov 28 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|