The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A082766 Series ratios converge alternately to sqrt(2) and 1+sqrt(1/2). 5
 1, 1, 2, 3, 4, 7, 10, 17, 24, 41, 58, 99, 140, 239, 338, 577, 816, 1393, 1970, 3363, 4756, 8119, 11482, 19601, 27720, 47321, 66922, 114243, 161564, 275807, 390050, 665857, 941664, 1607521, 2273378, 3880899, 5488420, 9369319, 13250218, 22619537 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(2n+2)/a(2n+1) converges to sqrt(2). a(2n+1)/a(2n) converges to 1+sqrt(1/2). a(n+2)/a(n) converges to 1+sqrt(2). a(2n) is A001333, a(2n+1) is A052542. LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..1000 Haocong Song and Wen Wu, Hankel determinants of a Sturmian sequence, arXiv:2007.09940 [math.CO], 2020. See p. 4. Index entries for linear recurrences with constant coefficients, signature (0,2,0,1). FORMULA a(2n) = a(2n-1) + a(2n-2); a(2n+1) = a(2n) + a(2n-2) O.g.f.: x*(1+x-x^2)*(x^2+1)/(1-2*x^2-x^4). - R. J. Mathar, Aug 08 2008 MATHEMATICA Rest[CoefficientList[Series[x (1 - x^2 + x) (x^2 + 1)/(1 - 2 x^2 - x^4), {x, 0, 50}], x]] (* G. C. Greubel, Nov 28 2017 *) LinearRecurrence[{0, 2, 0, 1}, {1, 1, 2, 3, 4}, 50] (* Harvey P. Dale, Dec 15 2022 *) PROG (Haskell) import Data.List (transpose) a082766 n = a082766_list !! (n-1) a082766_list = concat \$ transpose [a052542_list, tail a001333_list] -- Reinhard Zumkeller, Feb 24 2015 (PARI) x='x+O('x^30); Vec(x*(1+x-x^2)*(x^2+1)/(1-2*x^2-x^4)) \\ G. C. Greubel, Nov 28 2017 CROSSREFS Cf. A001333, A052542. See A119016 for another version. Sequence in context: A018143 A281839 A136570 * A119016 A082958 A218495 Adjacent sequences: A082763 A082764 A082765 * A082767 A082768 A082769 KEYWORD nonn AUTHOR Gary W. Adamson, May 24 2003 EXTENSIONS Edited by Don Reble, Nov 04 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 21:43 EST 2023. Contains 367616 sequences. (Running on oeis4.)