login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (3/4) * Sum_{k>=0} (3*k)^n/4^k.
11

%I #105 Jul 13 2019 09:02:11

%S 1,1,5,33,285,3081,40005,606033,10491885,204343641,4422082005,

%T 105265315233,2733583519485,76902684021801,2329889536156005,

%U 75629701786875633,2618654297178083085,96336948993312237561,3752590641305604502005,154294551397830418471233,6677999524135208461382685

%N a(n) = (3/4) * Sum_{k>=0} (3*k)^n/4^k.

%H Alois P. Heinz, <a href="/A255927/b255927.txt">Table of n, a(n) for n = 0..400</a>

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://arxiv.org/abs/quant-ph/0303030">Dobinski-type relations and the Log-normal distribution</a>, arXiv:quant-ph/0303030, 2003.

%H P. Blasiak, K. A. Penson and A. I. Solomon, <a href="http://dx.doi.org/10.1088/0305-4470/36/18/101">Dobinski-type relations and the Log-normal distribution</a>, J. Phys. A: Math. Gen. 36, (2003), L273.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LerchTranscendent.html">Lerch Transcendent</a>

%F a(n) = Sum_{k>=0} Stirling2(n,k)*k!*3^(n-k).

%F E.g.f.: 3/(4-exp(3*x)).

%F Special values of the generalized hypergeometric function n_F_(n-1):

%F a(n) = (3^(n+1)/16) * hypergeom([2,2,..2],[1,1,..1],1/4), where the sequence in the first square bracket ("upper" parameters) has n elements all equal to 2 whereas the sequence in the second square bracket ("lower" parameters) has n-1 elements all equal to 1.

%F Example: a(5) = 729 * hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.

%F a(n) is the n-th moment of the discrete weight function W(x) = (3/4)*sum(k>=0, Dirac(x-3*k)/4^k), n>=1.

%F a(n) ~ n! * 3^(n+1) / ((log(2))^(n+1) * 2^(n+3)). - _Vaclav Kotesovec_, Jul 09 2018

%F G.f.: Sum_{j>=0} j!*x^j / Product_{k=1..j} (1 - 3*k*x). - _Ilya Gutkovskiy_, Apr 04 2019

%F a(n) = A_{4}(n) where A_{n}(x) are the Eulerian polynomials as defined in A326323. - _Peter Luschny_, Jun 27 2019

%e a(5) = 729*hypergeom([2,2,2,2,2],[1,1,1,1],1/4)/16 = 3081.

%p S:= series(3/(4-exp(3*x)), x, 51):

%p seq(coeff(S,x,n)*n!, n=0..50); # _Robert Israel_, Sep 03 2015

%p seq(add(combinat:-eulerian1(n,k)*4^k, k=0..n), n=0..20); # _Peter Luschny_, Jun 27 2019

%t a[n_] := 3^(n+1)/4 HurwitzLerchPhi[1/4, -n, 0];

%t Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Sep 18 2018 *)

%t Eulerian1[0, 0] = 1; Eulerian1[n_, k_] := Sum[(-1)^j (k-j+1)^n Binomial[n+1, j], {j, 0, k+1}]; Table[Sum[Eulerian1[n, k] 4^k, {k, 0, n}], {n, 0, 20}] (* _Jean-François Alcover_, Jul 13 2019, after _Peter Luschny_ *)

%o (PARI) a(n) = sum(k=0, n, stirling(n,k,2)*k!*3^(n-k)); \\ _Michel Marcus_, Sep 03 2015

%Y Cf. A000670, A094418, A004123 A032033, A094417, A122704, A326323.

%K nonn

%O 0,3

%A _Karol A. Penson_, Sep 03 2015

%E a(0)=1 prepended by _Alois P. Heinz_, Sep 18 2018