This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032033 Stirling transform of A032031. 13
 1, 3, 21, 219, 3045, 52923, 1103781, 26857659, 746870565, 23365498683, 812198635941, 31055758599099, 1295419975298085, 58538439796931643, 2848763394161128101, 148537065755389540539, 8261178848690959117605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also "AIJ" (ordered, indistinct, labeled) transform of 3,3,3,3... Third row of array A094416 (generalized ordered Bell numbers). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018. P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, J. Phys. A.: Math. Gen  36 (2003) L273. C. G. Bower, Transforms (2) FORMULA E.g.f.: 1/(4-3*e^x). a(n) = 3*A050352(n), n>0. a(n) = sum(stirling2(n, k)*(3^k)*k!, k=0..n). a(n) = sum(k^n*(3/4)^k, k=0..infinity)/4. - Karol A. Penson, Jan 25 2002 a(n) = Sum_{k, 0<=k<=n} A131689(n,k)*3^k. [Philippe Deléham, Nov 03 2008] G.f. A(x)=B(x)/x, where B(x)=x+3*x^2+21*x^3+... = sum_{n>=1} b(n)*x^n satisfies 4*B(x)-x = 3*B(x/(1-x)), and b(n)=3*sum(k..1,n-1, binomial(n-1,k-1)*b(k)), b(1)=1. [Vladimir Kruchinin, Jan 27 2011] a(n) = log(4/3)*int {x = 0..inf} (floor(x))^n * (4/3)^(-x) dx. - Peter Bala, Feb 14 2015 MATHEMATICA a[n_] := PolyLog[-n, 3/4]/4; a[0] = 1; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 14 2011 *) t = 30; Range[0, t]! CoefficientList[Series[1/(4 - 3 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *) PROG (PARI) a(n)=ceil(polylog(-n, 3/4)/4) \\ Charles R Greathouse IV, Jul 14 2014 CROSSREFS Cf. A032031, A094418, A094419. Sequence in context: A158838 A236963 A107716 * A218494 A099121 A107864 Adjacent sequences:  A032030 A032031 A032032 * A032034 A032035 A032036 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 06:34 EST 2019. Contains 319269 sequences. (Running on oeis4.)