login
A032033
Stirling transform of A032031.
34
1, 3, 21, 219, 3045, 52923, 1103781, 26857659, 746870565, 23365498683, 812198635941, 31055758599099, 1295419975298085, 58538439796931643, 2848763394161128101, 148537065755389540539, 8261178848690959117605, 488177936257344615487803, 30544839926043868901604261
OFFSET
0,2
COMMENTS
Also "AIJ" (ordered, indistinct, labeled) transform of 3,3,3,3...
Third row of array A094416 (generalized ordered Bell numbers).
LINKS
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, J. Phys. A.: Math. Gen 36 (2003) L273.
C. G. Bower, Transforms (2)
Jacob Sprittulla, On Colored Factorizations, arXiv:2008.09984 [math.CO], 2020.
FORMULA
E.g.f.: 1/(4-3*exp(x)).
a(n) = 3 * A050352(n), n > 0.
a(n) = Sum_{k=0..n} Stirling2(n, k)*(3^k)*k!.
a(n) = (1/4)*Sum_{k>=0} k^n*(3/4)^k. - Karol A. Penson, Jan 25 2002
a(n) = Sum_{k=0..n} A131689(n,k)*3^k. - Philippe Deléham, Nov 03 2008
G.f. A(x)=B(x)/x, where B(x)=x+3*x^2+21*x^3+... = Sum_{n>=1} b(n)*x^n satisfies 4*B(x)-x = 3*B(x/(1-x)), and b(n)=3*Sum_{k=1..n-1} binomial(n-1,k-1)*b(k), b(1)=1. - Vladimir Kruchinin, Jan 27 2011
a(n) = log(4/3)*Integral_{x = 0..inf} (floor(x))^n * (4/3)^(-x) dx. - Peter Bala, Feb 14 2015
a(0) = 1; a(n) = 3 * Sum_{k=1..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Jan 17 2020
a(0) = 1; a(n) = 3*a(n-1) - 4*Sum_{k=1..n-1} (-1)^k * binomial(n-1,k) * a(n-k). - Seiichi Manyama, Nov 16 2023
MAPLE
b:= proc(n, m) option remember;
`if`(n=0, 3^m*m!, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 04 2021
MATHEMATICA
a[n_] := PolyLog[-n, 3/4]/4; a[0] = 1; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Nov 14 2011 *)
t = 30; Range[0, t]! CoefficientList[Series[1/(4 - 3 Exp[x]), {x, 0, t}], x] (* Vincenzo Librandi, Mar 16 2014 *)
PROG
(PARI) a(n)=ceil(polylog(-n, 3/4)/4) \\ Charles R Greathouse IV, Jul 14 2014
(PARI) my(N=25, x='x+O('x^N)); Vec(serlaplace(1/(4 - 3*exp(x)))) \\ Joerg Arndt, Jan 15 2024
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved