This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032035 Number of increasing rooted 2,3 cacti (triangular cacti with bridges) with n-1 nodes. 2
 1, 1, 1, 3, 13, 77, 573, 5143, 54025, 650121, 8817001, 133049339, 2210979381, 40118485237, 789221836741, 16730904387183, 380227386482641, 9221550336940241, 237724953543108753, 6491255423787076915, 187156557809878784797, 5681772224922980536413 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Also increasing involution rooted trees with n-1 nodes. REFERENCES O Bodini, M Dien, X Fontaine, A Genitrini, HK Hwang, Increasing Diamonds, in LATIN 2016: 12th Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings Pages pp 207-219 2016 DOI 10.1007/978-3-662-49529-2_16 Lecture Notes in Computer Science Series Volume 9644 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..200 C. G. Bower, Transforms (2) FORMULA E.g.f. of a(n+1) satisfies A'(x) = exp(A(x)+A(x)^2/2). E.g.f. satisfies A''(x) = 1/(1-A(x)). Shifts left 2 places under "AIJ" (ordered, indistinct, labeled) transform. MAPLE A:= proc(n) option remember; if n=0 then x else convert(series(Int(exp(A(n-1)+ A(n-1)^2/2), x), x=0, n+1), polynom) fi end; a:= n-> if n=1 then 1 else coeff(A(n-1), x, n-1)*(n-1)! fi: seq(a(n), n=1..20); # Alois P. Heinz, Aug 22 2008 MATHEMATICA CoefficientList[Series[Sqrt[2]*InverseErf[Sqrt[2/(E*Pi)] x + Erf[1/Sqrt[2]]], {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 07 2014 *) PROG (PARI) seq(n)={my(p=x+O(x*x^(n%2))); for(i=1, n\2, p=intformal(1 + intformal(1/(1-p)))); Vec(serlaplace(p))} \\ Andrew Howroyd, Sep 19 2018 CROSSREFS Cf. A001147, A091481. Sequence in context: A189239 A074530 A159662 * A273953 A127127 A043301 Adjacent sequences:  A032032 A032033 A032034 * A032036 A032037 A032038 KEYWORD nonn,eigen AUTHOR Christian G. Bower, Apr 01 1998 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 22:39 EST 2019. Contains 319251 sequences. (Running on oeis4.)