login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A094416
Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n).
19
1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130, 7087261
OFFSET
1,2
COMMENTS
Also, r times the number of (r+1)-level labeled linear rooted trees with n leaves.
"AIJ" (ordered, indistinct, labeled) transform of {r,r,r,...}.
Stirling transform of r^n*n!, i.e. of e.g.f. 1/(1-r*x).
Also, Bo(r,s) is ((x*d/dx)^n)(1/(1+r-r*x)) evaluated at x=1.
r-th ordered Bell polynomial (A019538) evaluated at n.
Bo(r,n) is the n-th moment of a geometric distribution with probability parameter = 1/(r+1). Here, geometric distribution is the number of failures prior to the first success. - Geoffrey Critzer, Jan 01 2019
Row r (starting at r=0), Bo(r+1, n), is the Akiyama-Tanigawa algorithm applied to the powers of r+1. See Python program below. - Shel Kaphan, May 03 2024
LINKS
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, 2003.
C. G. Bower, Transforms
FORMULA
E.g.f.: 1/(1 + r*(1 - exp(x))).
Bo(r, n) = Sum_{k=0..n} k!*r^k*Stirling2(n, k) = 1/(r+1) * Sum_{k>=1} k^n * (r/(r+1))^k, for r>0, n>0.
Recurrence: Bo(r, n) = r * Sum_{k=1..n} C(n, k)*Bo(r, n-k), with Bo(r, 0) = 1.
Bo(r,0) = 1, Bo(r,n) = r*Bo(r,n-1) - (r+1)*Sum_{j=1..n-1} (-1)^j * binomial(n-1,j) * Bo(r,n-j). - Seiichi Manyama, Nov 17 2023
EXAMPLE
Array begins as:
1, 3, 13, 75, 541, 4683, 47293, ...
2, 10, 74, 730, 9002, 133210, 2299754, ...
3, 21, 219, 3045, 52923, 1103781, 26857659, ...
4, 36, 484, 8676, 194404, 5227236, 163978084, ...
5, 55, 905, 19855, 544505, 17919055, 687978905, ...
6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
MATHEMATICA
Bo[_, 0]=1; Bo[r_, n_]:= Bo[r, n]= r*Sum[Binomial[n, k] Bo[r, n-k], {k, n}];
Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
PROG
(Magma)
A094416:= func< n, k | (&+[Factorial(j)*n^j*StirlingSecond(k, j): j in [0..k]]) >;
[A094416(n-k+1, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
(SageMath)
def A094416(n, k): return sum(factorial(j)*n^j*stirling_number2(k, j) for j in range(k+1)) # array
flatten([[A094416(n-k+1, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Jan 12 2024
(Python)
# The Akiyama-Tanigawa algorithm applied to the powers of r + 1
# generates the rows. Adds one row (r=0) and one column (n=0).
# Adapted from Peter Luschny on A371568.
def f(n, r): return (r + 1)**n
def ATtransform(r, len, f):
A = [0] * len
R = [0] * len
for n in range(len):
R[n] = f(n, r)
for j in range(n, 0, -1):
R[j - 1] = j * (R[j] - R[j - 1])
A[n] = R[0]
return A
for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
CROSSREFS
Columns include A014105, A094421.
Main diagonal is A094420.
Antidiagonal sums are A094422.
Sequence in context: A337432 A123027 A100652 * A218868 A329874 A152300
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 02 2004
EXTENSIONS
Offset corrected by Geoffrey Critzer, Jan 01 2019
STATUS
approved