OFFSET
1,2
COMMENTS
Also, r times the number of (r+1)-level labeled linear rooted trees with n leaves.
"AIJ" (ordered, indistinct, labeled) transform of {r,r,r,...}.
Stirling transform of r^n*n!, i.e. of e.g.f. 1/(1-r*x).
Also, Bo(r,s) is ((x*d/dx)^n)(1/(1+r-r*x)) evaluated at x=1.
r-th ordered Bell polynomial (A019538) evaluated at n.
Bo(r,n) is the n-th moment of a geometric distribution with probability parameter = 1/(r+1). Here, geometric distribution is the number of failures prior to the first success. - Geoffrey Critzer, Jan 01 2019
Row r (starting at r=0), Bo(r+1, n), is the Akiyama-Tanigawa algorithm applied to the powers of r+1. See Python program below. - Shel Kaphan, May 03 2024
LINKS
G. C. Greubel, Antidiagonals n = 1..50, flattened
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
P. Blasiak, K. A. Penson and A. I. Solomon, Dobinski-type relations and the log-normal distribution, arXiv:quant-ph/0303030, 2003.
C. G. Bower, Transforms
FORMULA
E.g.f.: 1/(1 + r*(1 - exp(x))).
Bo(r, n) = Sum_{k=0..n} k!*r^k*Stirling2(n, k) = 1/(r+1) * Sum_{k>=1} k^n * (r/(r+1))^k, for r>0, n>0.
Recurrence: Bo(r, n) = r * Sum_{k=1..n} C(n, k)*Bo(r, n-k), with Bo(r, 0) = 1.
Bo(r,0) = 1, Bo(r,n) = r*Bo(r,n-1) - (r+1)*Sum_{j=1..n-1} (-1)^j * binomial(n-1,j) * Bo(r,n-j). - Seiichi Manyama, Nov 17 2023
EXAMPLE
Array begins as:
1, 3, 13, 75, 541, 4683, 47293, ...
2, 10, 74, 730, 9002, 133210, 2299754, ...
3, 21, 219, 3045, 52923, 1103781, 26857659, ...
4, 36, 484, 8676, 194404, 5227236, 163978084, ...
5, 55, 905, 19855, 544505, 17919055, 687978905, ...
6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
MATHEMATICA
Bo[_, 0]=1; Bo[r_, n_]:= Bo[r, n]= r*Sum[Binomial[n, k] Bo[r, n-k], {k, n}];
Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
PROG
(Magma)
A094416:= func< n, k | (&+[Factorial(j)*n^j*StirlingSecond(k, j): j in [0..k]]) >;
[A094416(n-k+1, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
(SageMath)
def A094416(n, k): return sum(factorial(j)*n^j*stirling_number2(k, j) for j in range(k+1)) # array
flatten([[A094416(n-k+1, k) for k in range(1, n+1)] for n in range(1, 13)]) # G. C. Greubel, Jan 12 2024
(Python)
# The Akiyama-Tanigawa algorithm applied to the powers of r + 1
# generates the rows. Adds one row (r=0) and one column (n=0).
# Adapted from Peter Luschny on A371568.
def f(n, r): return (r + 1)**n
def ATtransform(r, len, f):
A = [0] * len
R = [0] * len
for n in range(len):
R[n] = f(n, r)
for j in range(n, 0, -1):
R[j - 1] = j * (R[j] - R[j - 1])
A[n] = R[0]
return A
for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 02 2004
EXTENSIONS
Offset corrected by Geoffrey Critzer, Jan 01 2019
STATUS
approved