login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218868
Triangular array read by rows: T(n,k) is the number of n-permutations that have exactly k distinct cycle lengths.
8
1, 2, 3, 3, 10, 14, 25, 95, 176, 424, 120, 721, 3269, 1050, 6406, 21202, 12712, 42561, 178443, 141876, 436402, 1622798, 1418400, 151200, 3628801, 17064179, 17061660, 2162160, 48073796, 177093256, 212254548, 41580000, 479001601, 2293658861, 2735287698, 719072640
OFFSET
1,2
COMMENTS
T(A000217(n),n) gives A246292. - Alois P. Heinz, Aug 21 2014
LINKS
P. Flajolet and R. Sedgewick, Analytic Combinatorics, Cambridge University Press, 2009
FORMULA
E.g.f.: Product_{i>=1} (1 + y*exp(x^i/i) - y).
EXAMPLE
: 1;
: 2;
: 3, 3;
: 10, 14;
: 25, 95;
: 176, 424, 120;
: 721, 3269, 1050;
: 6406, 21202, 12712;
: 42561, 178443, 141876;
: 436402, 1622798, 1418400, 151200;
MAPLE
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1,
`if`(i<1, 0, add((i-1)!^j*multinomial(n, n-i*j, i$j)/j!*
b(n-i*j, i-1)*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
seq(T(n), n=1..16); # Alois P. Heinz, Aug 21 2014
MATHEMATICA
nn=10; a=Product[1-y+y Exp[x^i/i], {i, 1, nn}]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Range[0, nn]!CoefficientList[Series[a , {x, 0, nn}], {x, y}], 1]]//Grid
CROSSREFS
Columns k=1-3 give: A005225, A005772, A133119.
Row sums are: A000142.
Row lengths are: A003056.
Cf. A208437, A242027 (the same for endofunctions), A246292, A317327.
Sequence in context: A123027 A100652 A094416 * A329874 A152300 A117030
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Nov 07 2012
STATUS
approved