login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005772
Number of permutations of length n with 2 cycle lengths.
(Formerly M2978)
6
3, 14, 95, 424, 3269, 21202, 178443, 1622798, 17064179, 177093256, 2293658861, 29296367476, 416567286225, 6250052633294, 103272943796399, 1717954871163982, 32068960264609523, 601640759502181648, 12257756112146028309, 257187849583000601516
OFFSET
3,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. S. Wilf, Three problems in combinatorial asymptotics, J. Combin. Theory, A 35 (1983), 199-207.
MAPLE
with(numtheory): with(combinat):
a:= n-> add(add(add((i-1)!^j*(d-1)!^((n-i*j)/d)*
multinomial(n, i$j, d$((n-i*j)/d))/j!/((n-i*j)/d)!,
d=select(x->x<i, divisors(n-i*j))), j=1..n/i), i=2..n-1):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 01 2014
MATHEMATICA
multinomial[n_, k_List] := n!/Times @@ (k!); a[n_] := Sum[Sum[Sum[(i - 1)!^j*(d-1)!^((n-i*j)/d)*multinomial[n, Join[Array[i&, j], Array[d&, ((n - i*j)/d)]]]/j!/((n-i*j)/d)!, {d, Select[If[n == i*j, {}, Divisors[n - i*j]], #<i&]}], {j, 1, n/i}], {i, 2, n-1}]; Table[a[n], {n, 3, 30}] (* Jean-François Alcover, Nov 12 2015, after Alois P. Heinz *)
CROSSREFS
Column k=2 of A218868.
Sequence in context: A091906 A214378 A094369 * A233083 A053984 A113181
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Nov 02 2003
STATUS
approved