login
A218869
Triangle read by rows: T(n,k) = number of aperiodic binary sequences of length n with curling number k (1 <= k <= n).
6
2, 2, 0, 4, 2, 0, 6, 4, 2, 0, 12, 12, 4, 2, 0, 20, 20, 8, 4, 2, 0, 40, 52, 20, 8, 4, 2, 0, 74, 100, 36, 16, 8, 4, 2, 0, 148, 214, 76, 36, 16, 8, 4, 2, 0, 286, 414, 160, 68, 32, 16, 8, 4, 2, 0, 572, 876, 328, 140, 68, 32, 16, 8, 4, 2, 0, 1124, 1722, 640, 276, 132, 64, 32, 16, 8, 4, 2, 0
OFFSET
1,1
COMMENTS
S is aperiodic if it is not of the form S = T^m with m > 1.
Row sums are A027375. First column is A122536.
It appears that reversed rows converge to A155559. - Omar E. Pol, Nov 20 2012
LINKS
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102, Dec 25 2012.
B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
John P. Linderman, Rows 1 through 64 (Rows 1 through 36 were computed by N. J. A. Sloane)
EXAMPLE
Triangle begins:
2,
2, 0,
4, 2, 0,
6, 4, 2, 0,
12, 12, 4, 2, 0,
20, 20, 8, 4, 2, 0,
40, 52, 20, 8, 4, 2, 0,
74, 100, 36, 16, 8, 4, 2, 0,
148, 214, 76, 36, 16, 8, 4, 2, 0,
286, 414, 160, 68, 32, 16, 8, 4, 2, 0,
572, 876, 328, 140, 68, 32, 16, 8, 4, 2, 0,
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Nov 07 2012
STATUS
approved