login
A098268
Unique prime factors of 2^n+1 are of the form kn+1. These are the values for k.
1
2, 2, 0, 4, 2, 2, 6, 32, 2, 4, 62, 20, 210, 2, 8, 22, 4096, 2570, 2, 6, 9198, 3084, 258, 18, 96, 121574, 4, 28, 10, 162, 2, 6, 62, 3230, 563940, 2, 104592, 2, 44, 23091222
OFFSET
1,1
COMMENTS
The values for 2^n+1 are in A000051. In this sequence where a(n) has more than one k value they are separated with commas. See A097406 & A097407.
PROG
(PARI) isprimitivep(p, n) = {for (r=1, n-1, if (((2^r+1) % p) == 0, return (0)); ); return (1); }
lista(n) = {f = factor(2^n+1); hasprim = 0; for(i=1, #f~, if (isprimitivep(f[i, 1], n), hasprim = 1; print1((f[i, 1]-1)/n, ", "); ); ); if (! hasprim, print1(0, ", ")); } \\ Michel Marcus, Jul 16 2013
CROSSREFS
Sequence in context: A218875 A218869 A144458 * A330347 A329681 A276275
KEYWORD
nonn
AUTHOR
Marco Matosic, Sep 01 2004
STATUS
approved