login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098269
a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4.
4
1, 8, 94, 1232, 16966, 240368, 3468844, 50712992, 748553926, 11131168688, 166498969924, 2502416381792, 37759888297756, 571681667171168, 8679980422677784, 132116085646644032, 2015249400937940806
OFFSET
0,2
COMMENTS
Central coefficients of (1+8x+15x^2)^n. 2^n*LegendreP(n,k) yields the central coefficients of (1+2kx+(k^2-1)x^2)^n, with g.f. 1/sqrt(1-4kx+4x^2).
16th binomial transform of 2^n*LegendreP(n,-4) = (-1)^n*A098269(n). - Paul Barry, Sep 03 2004
Diagonal of rational functions 1/(1 + x + 3*y + x*z - 2*x*y*z), 1/(1 - x + y + 3*x*z - 2*x*y*z), 1/(1 - x - x*y - 3*y*z - 2*x*y*z). - Gheorghe Coserea, Jul 03 2018
LINKS
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
FORMULA
G.f.: 1/sqrt(1-16x+4x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, k)*binomial(2(n-k), n)*4^(n-2k).
E.g.f.: exp(8*x)*BesselI(0, 2*sqrt(15)*x), cf. A084770. - Vladeta Jovovic, Sep 01 2004
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 3^k * 5^(n-k). - Paul D. Hanna, Sep 29 2012
D-finite with recurrence: n*a(n) = 8*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012
a(n) ~ sqrt(450+120*sqrt(15))*(8+2*sqrt(15))^n/(30*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 3^n*hypergeom([-n, -n], [1], 5/3) = 5^n*hypergeom([-n, -n], [1], 3/5). - Detlef Meya, May 21 2024
MATHEMATICA
Table[SeriesCoefficient[1/Sqrt[1-16*x+4*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *)
a[n_] := 3^n*HypergeometricPFQ[{-n, -n}, {1}, 5/3]; Flatten[Table[a[n], {n, 0, 16}]] (* Detlef Meya, May 21 2024 *)
PROG
(PARI) a(n)=pollegendre(n, 4)<<n \\ Charles R Greathouse IV, Oct 24 2011
(PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012
CROSSREFS
Sequence in context: A214385 A121161 A360200 * A010565 A299002 A299669
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 01 2004
STATUS
approved