The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098269 a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4. 3
 1, 8, 94, 1232, 16966, 240368, 3468844, 50712992, 748553926, 11131168688, 166498969924, 2502416381792, 37759888297756, 571681667171168, 8679980422677784, 132116085646644032, 2015249400937940806 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Central coefficients of (1+8x+15x^2)^n. 2^n*LegendreP(n,k) yields the central coefficients of (1+2kx+(k^2-1)x^2)^n, with g.f. 1/sqrt(1-4kx+4x^2). 16th binomial transform of 2^n*LegendreP(n,-4) = (-1)^n*A098269(n). - Paul Barry, Sep 03 2004 Diagonal of rational functions 1/(1 + x + 3*y + x*z - 2*x*y*z), 1/(1 - x + y + 3*x*z - 2*x*y*z), 1/(1 - x - x*y - 3*y*z - 2*x*y*z). - Gheorghe Coserea, Jul 03 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624. Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5. FORMULA G.f.: 1/sqrt(1-16x+4x^2). a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, k)*binomial(2(n-k), n)*4^(n-2k). E.g.f.: exp(8*x)*BesselI(0, 2*sqrt(15)*x), cf. A084770. - Vladeta Jovovic, Sep 01 2004 a(n) = Sum_{k=0..n} binomial(n,k)^2 * 3^k * 5^(n-k). - Paul D. Hanna, Sep 29 2012 D-finite with recurrence: n*a(n) = 8*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 14 2012 a(n) ~ sqrt(450+120*sqrt(15))*(8+2*sqrt(15))^n/(30*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012 MATHEMATICA Table[SeriesCoefficient[1/Sqrt[1-16*x+4*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (PARI) a(n)=pollegendre(n, 4)<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 28 21:22 EDT 2021. Contains 347717 sequences. (Running on oeis4.)