login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4.
4

%I #39 May 21 2024 04:06:45

%S 1,8,94,1232,16966,240368,3468844,50712992,748553926,11131168688,

%T 166498969924,2502416381792,37759888297756,571681667171168,

%U 8679980422677784,132116085646644032,2015249400937940806

%N a(n) = 2^n*P_n(4), 2^n times the Legendre polynomial of order n at 4.

%C Central coefficients of (1+8x+15x^2)^n. 2^n*LegendreP(n,k) yields the central coefficients of (1+2kx+(k^2-1)x^2)^n, with g.f. 1/sqrt(1-4kx+4x^2).

%C 16th binomial transform of 2^n*LegendreP(n,-4) = (-1)^n*A098269(n). - _Paul Barry_, Sep 03 2004

%C Diagonal of rational functions 1/(1 + x + 3*y + x*z - 2*x*y*z), 1/(1 - x + y + 3*x*z - 2*x*y*z), 1/(1 - x - x*y - 3*y*z - 2*x*y*z). - _Gheorghe Coserea_, Jul 03 2018

%H Vincenzo Librandi, <a href="/A098269/b098269.txt">Table of n, a(n) for n = 0..200</a>

%H Hacène Belbachir and Abdelghani Mehdaoui, <a href="https://doi.org/10.2989/16073606.2020.1729269">Recurrence relation associated with the sums of square binomial coefficients</a>, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.

%H Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Szalay/szalay42.html">Diagonal Sums in the Pascal Pyramid, II: Applications</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.

%F G.f.: 1/sqrt(1-16x+4x^2).

%F a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n, k)*binomial(2(n-k), n)*4^(n-2k).

%F E.g.f.: exp(8*x)*BesselI(0, 2*sqrt(15)*x), cf. A084770. - _Vladeta Jovovic_, Sep 01 2004

%F a(n) = Sum_{k=0..n} binomial(n,k)^2 * 3^k * 5^(n-k). - _Paul D. Hanna_, Sep 29 2012

%F D-finite with recurrence: n*a(n) = 8*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 14 2012

%F a(n) ~ sqrt(450+120*sqrt(15))*(8+2*sqrt(15))^n/(30*sqrt(Pi*n)). - _Vaclav Kotesovec_, Oct 14 2012

%F a(n) = 3^n*hypergeom([-n, -n], [1], 5/3) = 5^n*hypergeom([-n, -n], [1], 3/5). - _Detlef Meya_, May 21 2024

%t Table[SeriesCoefficient[1/Sqrt[1-16*x+4*x^2],{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Oct 14 2012 *)

%t a[n_] := 3^n*HypergeometricPFQ[{-n, -n}, {1}, 5/3]; Flatten[Table[a[n], {n,0,16}]] (* _Detlef Meya_, May 21 2024 *)

%o (PARI) a(n)=pollegendre(n,4)<<n \\ _Charles R Greathouse IV_, Oct 24 2011

%o (PARI) {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*5^(n-k))} \\ _Paul D. Hanna_, Sep 29 2012

%Y Cf. A069835, A084773.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Sep 01 2004