|
|
A121161
|
|
a(n) is the nearest integer to log(lcm(1,2,3,...,10^n)).
|
|
0
|
|
|
0, 8, 94, 997, 10013, 100052, 999587, 9998539, 99998243, 1000001596, 10000042120
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..10.
Andrew Granville and Greg Martin, Prime Number Races, arXiv:math/0408319v1 [math.NT] (see page 11).
|
|
FORMULA
|
For asymptotics see A003418.
a(n) = Sum_{i=1..PrimePi(10^n)} log(p_i^e_i), where e is the maximum exponent such that p^e < 10^n. - Robert G. Wilson v, Aug 16 2006
|
|
MATHEMATICA
|
f[n_] := Block[{s = 0, i = 1, j = PrimePi[10^n], m = 10^n}, While[i <= j, p = Prime@i; s = s + N[Floor[ Log[p, m]]Log[p], 12]; i++ ]; Round@s]; Do[ Print[f@n], {n, 0, 8}] (* Robert G. Wilson v, Aug 16 2006 *)
|
|
CROSSREFS
|
Cf. A003418.
Sequence in context: A299339 A299846 A214385 * A098269 A010565 A299002
Adjacent sequences: A121158 A121159 A121160 * A121162 A121163 A121164
|
|
KEYWORD
|
more,nonn
|
|
AUTHOR
|
Lekraj Beedassy, Aug 13 2006
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v, Aug 16 2006
a(9), a(10) from Robert G. Wilson v, Sep 03 2012
|
|
STATUS
|
approved
|
|
|
|