login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276275
Padovan like sequence: a(n) = a(n-2) + a(n-3) for n>3, a(1)=2, a(2)=2, a(3)=0.
0
2, 2, 0, 4, 2, 4, 6, 6, 10, 12, 16, 22, 28, 38, 50, 66, 88, 116, 154, 204, 270, 358, 474, 628, 832, 1102, 1460, 1934, 2562, 3394, 4496, 5956, 7890, 10452, 13846, 18342, 24298, 32188, 42640, 56486, 74828, 99126, 131314, 173954, 230440, 305268, 404394, 535708
OFFSET
1,1
COMMENTS
Obtained from Padovan Spiral number (A134816) modulo 3 reduction periodic sequence 1112201210010, 111 112 122 220 ... fourth initialization values 220, it satisfies the same recurrence a(n) = a(n-2) + a(n-3).
FORMULA
G.f.: 2*x*(1 + x - x^2)/(1 - x^2 - x^3).
a(n) = A134816(n) + A007307(n-3) for n>=4.
a(n) = 2*A084338(n-3) for n>=4.
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 2] + a[n - 3], a[1] == 2, a[2] == 2, a[3] == 0}, a, {n, 1, 48}] (* or *) CoefficientList[Series[2 x (1 + x - x^2)/(1 - x^2 - x^3), {x, 0, 47}], x] (* Michael De Vlieger, Sep 02 2016 *)
LinearRecurrence[{0, 1, 1}, {2, 2, 0}, 60] (* Harvey P. Dale, Jan 27 2023 *)
CROSSREFS
Sequence in context: A098268 A330347 A329681 * A128585 A217840 A181615
KEYWORD
nonn,easy
AUTHOR
Nicolas Bègue, Aug 26 2016
STATUS
approved