The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098265 G.f. : 1/(1-2x-23x^2)^(1/2). 2
 1, 1, 13, 37, 289, 1201, 7741, 38053, 227137, 1207009, 6995053, 38591653, 221446369, 1245188881, 7130897437, 40516456357, 232260610177, 1327920945601, 7627285093069, 43787832627493, 252042452907169, 1451244932278129, 8370001674641917, 48303478743113893, 279083099450496961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Central coefficient of (1+x+6x^2)^n. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7. FORMULA E.g.f.: exp(x)*BesselI(0, 2*sqrt(6)x). a(n) = sum{k=0..floor(n/2), binomial(n, k)*binomial(n-k, k)*6^k}. a(n) = sum{k=0..floor(n/2), binomial(n, 2k)*binomial(2k, k)*6^k}. n*a(n) +(1-2n)*a(n-1) +23(1-n)*a(n-2)=0. (Recurrence (4) in the Noe paper).- Veka Gesell, Jun 26 2012 a(n) ~ sqrt(72+6*sqrt(6))*(1+2*sqrt(6))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012 MATHEMATICA Table[SeriesCoefficient[1/Sqrt[1-2*x-23*x^2], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 14 2012 *) PROG (PARI) x='x+O('x^66); Vec(1/(1-2*x-23*x^2)^(1/2)) \\ Joerg Arndt, May 11 2013 CROSSREFS Cf. A084601, A084603, A084605, A098264. Sequence in context: A206279 A130621 A309594 * A195540 A262475 A309808 Adjacent sequences: A098262 A098263 A098264 * A098266 A098267 A098268 KEYWORD easy,nonn AUTHOR Paul Barry, Aug 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 08:07 EDT 2024. Contains 374885 sequences. (Running on oeis4.)