login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098263
Chebyshev polynomials S(n,731).
2
1, 731, 534360, 390616429, 285540075239, 208729404383280, 152580909064102441, 111536435796454501091, 81532981986299176195080, 59600498295548901344102389, 43567882721064260583362651279
OFFSET
0,2
COMMENTS
Used for all positive integer solutions of Pell equation x^2 - 733*y^2 = -4. See A098291 with A098292.
FORMULA
a(n)= S(n, 731)=U(n, 731/2)= S(2*n+1, sqrt(733))/sqrt(733) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=731*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=731; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (731+27*sqrt(733))/2 and am := (731-27*sqrt(733))/2 = 1/ap.
G.f.: 1/(1-731*x+x^2).
MATHEMATICA
LinearRecurrence[{731, -1}, {1, 731}, 20] (* Harvey P. Dale, Jun 21 2020 *)
CROSSREFS
Sequence in context: A373192 A031705 A158396 * A289571 A098291 A255798
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved