login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098260
Chebyshev polynomials S(n,627).
2
1, 627, 393128, 246490629, 154549231255, 96902121506256, 60757475635191257, 38094840321143411883, 23885404123881284059384, 14976110290833243961821885, 9389997266948320082778262511
OFFSET
0,2
COMMENTS
Used for all positive integer solutions of Pell equation x^2 - 629*y^2 = -4. See A098261 with A098262.
FORMULA
a(n)= S(n, 627)=U(n, 627/2)= S(2*n+1, sqrt(629))/sqrt(629) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x).
a(n)=627*a(n-1)-a(n-2), n >= 1; a(0)=1, a(1)=627; a(-1):=0.
a(n)=(ap^(n+1) - am^(n+1))/(ap-am) with ap := (627+25*sqrt(629))/2 and am := (627-25*sqrt(629))/2 = 1/ap.
G.f.: 1/(1-627*x+x^2).
MATHEMATICA
LinearRecurrence[{627, -1}, {1, 627}, 20] (* Harvey P. Dale, Aug 28 2012 *)
CROSSREFS
Sequence in context: A031703 A158382 A188362 * A224603 A345536 A345788
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Sep 10 2004
STATUS
approved