login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098258 Chebyshev polynomials S(n,531) + S(n-1,531) with Diophantine property. 2
1, 532, 282491, 150002189, 79650879868, 42294467207719, 22458282436418921, 11925305679271239332, 6332314857410591666371, 3362447263979344903603669, 1785453164858174733221881868, 948072268092426803995915668239 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(23*a(n))^2 - 533*b(n)^2 = -4 with b(n)=A098259(n) give all positive solutions of this Pell equation.

LINKS

Table of n, a(n) for n=0..11.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (531, -1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n)= S(n, 531) + S(n-1, 531) = S(2*n, sqrt(533)), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x). S(n, 531)=A098257(n).

a(n)= (-2/23)*I*((-1)^n)*T(2*n+1, 23*I/2) with the imaginary unit I and Chebyshev's polynomials of the first kind. See the T-triangle A053120.

G.f.: (1+x)/(1-531*x+x^2).

a(n)=531*a(n-1)-a(n-2), n>1 ; a(0)=1, a(1)=532 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

All positive solutions of Pell equation x^2 - 533*y^2 = -4 are

(23=23*1,1), (12236=23*532,530), (6497293=23*282491,281429),

(3450050347=23*150002189,149438269), ...

CROSSREFS

Sequence in context: A191950 A048055 A067803 * A160176 A077085 A165989

Adjacent sequences:  A098255 A098256 A098257 * A098259 A098260 A098261

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 05:25 EDT 2017. Contains 287077 sequences.