login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098259 First differences of Chebyshev polynomials S(n,531)=A098257(n) with Diophantine property. 3
1, 530, 281429, 149438269, 79351439410, 42135464888441, 22373852504322761, 11880473544330497650, 6308509078186989929389, 3349806440043747322007909, 1778740911154151640996270290, 944508074016414477621697516081 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(23*b(n))^2 - 533*a(n)^2 = -4 with b(n)=A098258(n) give all positive solutions of this Pell equation.

LINKS

Table of n, a(n) for n=0..11.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (531, -1).

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n)= ((-1)^n)*S(2*n, 23*I) with the imaginary unit I and the S(n, x)=U(n, x/2) Chebyshev polynomials.

G.f.: (1-x)/(1-531*x+x^2).

a(n)= S(n, 531) - S(n-1, 531) = T(2*n+1, sqrt(533)/2)/(sqrt(533)/2), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.

a(n)=531*a(n-2)-a(n-2), n>1 ; a(0)=1, a(1)=530 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

All positive solutions of Pell equation x^2 - 533*y^2 = -4 are

(23=23*1,1), (12236=23*532,530), (6497293=23*282491,281429),

(3450050347=23*150002189,149438269), ...

CROSSREFS

Sequence in context: A031724 A031611 A251004 * A174761 A031967 A031521

Adjacent sequences:  A098256 A098257 A098258 * A098260 A098261 A098262

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 18:50 EDT 2018. Contains 315270 sequences. (Running on oeis4.)