The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A098292 First differences of Chebyshev polynomials S(n,731)=A098263(n) with Diophantine property. 4
 1, 730, 533629, 390082069, 285149458810, 208443864308041, 152372179659719161, 111383854887390398650, 81421445550502721693989, 59518965313562602167907309, 43508282222768711682018548890 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS (27*b(n))^2 - 733*a(n)^2 = -4 with b(n)=A098291(n) give all positive solutions of this Pell equation. LINKS G. C. Greubel, Table of n, a(n) for n = 0..340 Tanya Khovanova, Recursive Sequences Giovanni Lucca, Integer Sequences and Circle Chains Inside a Hyperbola, Forum Geometricorum (2019) Vol. 19, 11-16. Index entries for sequences related to Chebyshev polynomials. Index entries for linear recurrences with constant coefficients, signature (731,-1). FORMULA a(n) = ((-1)^n)*S(2*n, 27*i) with the imaginary unit i and the S(n, x) = U(n, x/2) Chebyshev polynomials. G.f.: (1-x)/(1-731*x+x^2). a(n) = S(n, 731) - S(n-1, 731) = T(2*n+1, sqrt(733)/2)/(sqrt(733)/2), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120. a(n) = 731*a(n-1) - a(n-2), n > 1; a(0)=1, a(1)=730. - Philippe Deléham, Nov 18 2008 EXAMPLE All positive solutions of Pell equation x^2 - 733*y^2 = -4 are (27=27*1,1), (19764=27*732,730), (14447457=27*535091,533629), (10561071303=27*391150789,390082069), ... MATHEMATICA LinearRecurrence[{731, -1}, {1, 730}, 20] (* Harvey P. Dale, Nov 15 2013 *) PROG (PARI) my(x='x+O('x^20)); Vec((1-x)/(1-731*x+x^2)) \\ G. C. Greubel, Aug 01 2019 (Magma) I:=[1, 730]; [n le 2 select I[n] else 731*Self(n-1) - Self(n-2): n in [1..20]]; // G. C. Greubel, Aug 01 2019 (Sage) ((1-x)/(1-731*x+x^2)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Aug 01 2019 (GAP) a:=[1, 730];; for n in [3..20] do a[n]:=731*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Aug 01 2019 CROSSREFS Cf. A098291. Sequence in context: A224437 A259322 A085441 * A031525 A031705 A158396 Adjacent sequences: A098289 A098290 A098291 * A098293 A098294 A098295 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Sep 10 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 11:24 EDT 2024. Contains 372940 sequences. (Running on oeis4.)