login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A098292 First differences of Chebyshev polynomials S(n,731)=A098263(n) with Diophantine property. 3
1, 730, 533629, 390082069, 285149458810, 208443864308041, 152372179659719161, 111383854887390398650, 81421445550502721693989, 59518965313562602167907309, 43508282222768711682018548890 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

(27*b(n))^2 - 733*a(n)^2 = -4 with b(n)=A098291(n) give all positive solutions of this Pell equation.

LINKS

Table of n, a(n) for n=0..10.

Tanya Khovanova, Recursive Sequences

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (731, -1).

FORMULA

a(n)= ((-1)^n)*S(2*n, 27*I) with the imaginary unit I and the S(n, x)=U(n, x/2) Chebyshev polynomials.

G.f.: (1-x)/(1-731*x+x^2).

a(n)= S(n, 731) - S(n-1, 731) = T(2*n+1, sqrt(733)/2)/(sqrt(733)/2), with S(n, x)=U(n, x/2) Chebyshev's polynomials of the second kind, A049310. S(-1, x)= 0 = U(-1, x) and T(n, x) Chebyshev's polynomials of the first kind, A053120.

a(n)=731*a(n-1)-a(n-2), n>1 ; a(0)=1, a(1)=730 . [From Philippe Deléham, Nov 18 2008]

EXAMPLE

All positive solutions of Pell equation x^2 - 733*y^2 = -4 are

(27=27*1,1), (19764=27*732,730), (14447457=27*535091,533629),

(10561071303=27*391150789,390082069), ...

MATHEMATICA

LinearRecurrence[{731, -1}, {1, 730}, 20] (* Harvey P. Dale, Nov 15 2013 *)

CROSSREFS

Sequence in context: A224437 A259322 A085441 * A031525 A031705 A158396

Adjacent sequences:  A098289 A098290 A098291 * A098293 A098294 A098295

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Sep 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 23:21 EDT 2018. Contains 315306 sequences. (Running on oeis4.)